
White Paper

Configuring the MicroBlaster Fast Passive
Parallel Software Driver

May 2003, ver. 1.0 1

WP-MCRBLSTRPLL-1.0

Introduction

The MicroBlaster fast passive parallel (FPP) software driver is an embedded solution for configuring
Altera® SRAM-based programmable logic devices (PLDs). The FPP configuration scheme allows eight
bits of configuration data to be loaded to the target device on every clock cycle, significantly reducing
configuration time.

You can customize the modular source code’s I/O control routines (provided as a separate file) for your
system. The MicroBlaster FPP software driver supports raw binary file (.rbf) format generated by the
Quartus® II software, and was developed and tested on the Windows NT platform. The file size of this
Windows NT driver is about 40 Kbytes.

This white paper describes the source code of MicroBlaster FPP driver and explains how it can be ported
to other embedded platforms.

I/O Pin Assignments

Because the writing and reading of data to and from the I/O ports on other platforms maps to the parallel
port architecture, this document focuses on the assignment of FPP configuration signal pins to a parallel
port. These pin assignments reduce the required modification on the original source code. Table 1 shows
the assignment of the FPP configuration signals to a parallel port.

Table 1. FPP Configuration Signal Pin Assignments to a Parallel Port

Port Bit (1)

 7 6 5 4 3 2 1 0

Port 0 (2) DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

Port 1 (2) CONF_DONE - - nSTATUS - - - -

Port 2 (2) - - - - nCONFIG - - DCLK

Notes to Table 1:
(1) Bit 7 is the most significant bit (MSB).
(2) This port refers to the index from the base address of the parallel port (e.g., 0x378).

Configuring the MicroBlaster Fast Parallel Software Driver Altera Corporation

 2

The Interface

The MicroBlaster FPP software driver’s source code consists of two modules: data processing and I/O
control. The data processing module reads the programming data from the RBF, rearranges it, and sends
it to the I/O control module. The I/O control module then transfers the configuration data to the target
PLD. Periodically, the I/O control module monitors certain configuration pin’s status to see if any errors
have taken place during the configuration process. When an error occurs, the MicroBlaster FPP source
code re-initiates the configuration process.

Source File

Table 2 describes the MicroBlaster FPP source files.

Table 2. MicroBlaster FPP Source Files

File Descriptions

mblaster_fpp.c Contains the main() function. It manages the processing of the programming input file,
instantiates the configuration process, and responds to any configuration errors. This file is
platform independent.

mb_fpp_io.c
mb_fpp_io.h

These files handle the I/O control functions and are platform dependent. They are developed
for PCs only running Windows NT. Modify these files to support other platforms.

Constant

The source code contains several program and user-defined constants. While the program constant should
not be changed, user-defined constants can be changed if necessary. Table 3 summarizes the constants.

Table 3. Program & User-Defined Constants

Constant Type Description
WINDOWS_NT Program Windows NT operating system

EMBEDDED Program Embedded microprocessor system or other operating system

PORT Program Determines the operating platform

nSTATUS Program nSTATUS signal (Port 1, Bit 4)

CONF_DONE Program CONF_DONE signal (Port 1, Bit 7)

INIT_CYCLE User The number of clock cycles to toggle after configuration is done
to initialize the device. Each device family requires a specific
number of clock cycles.

RECONF_COUNT_MAX User The maximum number of auto-reconfiguration attempts allowed
when the program detects an error.

CHECK_EVERY_X_BYTE User Check nSTATUS pin for every X number of bytes programmed.
Do not use 0.

CLOCK_X_CYCLE (optional) User The number of additional clock cycles to toggle after
INIT_CYCLE. Use 0 if no additional clock cycles are required.

Altera Corporation Configuring the MicroBlaster Fast Parallel Software Driver

 3

Global Variables

Table 4 summarizes the global variables used when reading or writing to I/O ports. Map the I/O ports of
your system to these global variables.

Table 4. Global Variables

Global Variables Type Descriptions

sig_port_maskbit[X] Integer array Holds the mask bit position for nSTATUS and CONF_DONE signals.

X = 0 refers to nSTATUS
X = 1 refers to CONF_DONE

port_reset[Z] Integer array Holds the reset value of the output ports.

Z = 0 refers to Port 0
Z = 1 refers to Port 1

Functions

Table 5 describes the parameters and the return value of some of the functions in the source code. Only
functions declared in the mb_fpp_io.c file are discussed, because you need to customize these functions
to work on platforms other than Windows NT. These functions contain the I/O control routines.

Table 5. I/O Control Functions

Functions Parameters Return Value Descriptions

ReadPort

int port Integer This function reads the value of the port and returns it. Only the least
significant byte contains valid data. (1)

FlushPort int port
int data

None This function writes the data to the port. Data of integer type is passed to
the function. Only the least significant byte contains valid data.
FlushPort function can access either DATA port or CONTROL port. (1)

The DATA port carries the byte-wide configuration data whereas
CONTROL port gives access to control signals (i.e., DLCK and nCONFIG).

Dump2PortIO int port
int data

None This function passes the configuration data to FlushPort function. Data
is then clocked continuously to the device.

Note to Table 5:
(1) This port refers to the index from the base address of the parallel port (e.g., 0x378).

Configuring the MicroBlaster Fast Parallel Software Driver Altera Corporation

 4

Program Flow

Figure 1 illustrates the program flow of the MicroBlaster FPP software driver. The
CHECK_EVERY_X_BYTE, RECONF_COUNT_MAX, INIT_CYCLE, and CLOCK_X_CYCLE constants
determine the flow of the configuration process. See Table 3 for the definition of these constants.

Figure 1. MicroBlaster FPP Program Flow

Start

Get file size

Start configuration

Read nSTATUS

End

Read nSTATUS and
CONF_DONE

nSTATUS = 0?

Byte counter %
CHECK_EVERY_X_BYTE

= 0?

Byte counter
= full size?

nSTATUS = 0?
or

CONF_DONE = 0?

Toggle DCLK for
INIT_CYCLE cycles

CLOCK_X_CYCLE
= 0?

Toggle DCLK for
CLOCK_X_CYCLE cycles

Configuration count =
RECONF_COUNT_MAX

Get one byte configuration
data and send it to the I/O port

Increase the byte and
configuration counter

Yes

Yes

No

No

Yes

No

No

Yes

Yes

No

Yes

No

Altera Corporation Configuring the MicroBlaster Fast Parallel Software Driver

 5

Porting

Three platform-dependent routines handle the read and write operations in the I/O control module. The
read operation reads the value that is sent to the input port. The write operation writes data to the output
port.

To port the source code to other platforms or embedded systems, you must implement your I/O control
routines in the I/O control functions (i.e., ReadPort, FlushPort, and DumptoPortIO). See
Table 5. You can modify the existing code to suit your applications. Your I/O control routines can be
implemented between the following compiler directives:

 #if PORT == WINDOWS_NT
 /* original source code */
 #else if PORT == EMBEDDED
 /* put your I/O control routines source code here */
 #endif

Reading

The ReadPort function accepts the port as an integer parameter and returns an integer value. Your code
should map or translate the port value defined in the parallel port architecture (see Table 1) to the I/O
port definition of your system.

For example, when reading from port 1, your source code should read the CONF_DONE and nSTATUS
signals from your system (defined in Table 1). The code should then rearrange these signals within an
integer variable so that the values of CONF_DONE and nSTATUS are represented by bit position 7 and 4
of the integer, respectively. This behaviorally maps your system’s I/O ports to the pins in the pin
assignments of the parallel port architecture. By adding these lines of translation code to the mb_fpp_io.c
file, you can avoid modifying code in the mblaster_fpp.c file.

Writing

There are two functions governing the write operation: Dump2PortIO and FlushPort. The
Dump2PortIO function receives two integer parameters (port and data) from the mblaster_fpp.c file.
This “port” refers to the index from the base address of the parallel port (e.g., 0x378 whereas “data”
refers to control signal or configuration data.

If a control signal reaches Dump2PortIO (e.g., nCONFIG), it will be sent to the FlushPort function
to be driven out of the I/O port. However, if the Dump2PortIO function receives configuration data
(DATA[7..0]) that requires continuous clocking, one clock cycle (DCLK) will also be driven out for
each byte of configuration data.

Due to parallel port architecture limitations, the Dump2PortIO function takes three steps to drive one
byte of configuration data and one clock cycle out of the I/O port. However, an embedded system can
reduce this to two steps, with the condition that it has more than eight bits of I/O port registers.

Configuring the MicroBlaster Fast Parallel Software Driver Altera Corporation

 6

You can modify the FlushPort function the same way as the ReadPort function. Your code maps or
translates the port value that is defined in the parallel port architecture (see Table 1) to the I/O port
defined by your system. By adding new I/O port translation codes to the mb_fpp_io.c file, you can avoid
modifying code in the mblaster_fpp.c file.

Example

Figure 2 shows an embedded system holding 12 configuration signals in the data registers of an
embedded 16-bit microprocessor. When reading from the I/O ports, the I/O control routine reads the
values of the data registers and maps them to the particular bits in the parallel port registers (Port 0 to
Port 2). These bits are later accessed and processed by the data processing module.

Figure 2. Example of I/O Reading & Writing Mapping Processes

When writing, the values of the signals are stored in the parallel port registers (Port 0 to Port 2) by
the data processing module. The I/O control routine then reads the data from the parallel port registers
and sends it to the corresponding data registers of the microprocessor.

Altera Corporation Configuring the MicroBlaster Fast Parallel Software Driver

 7

Figure 3 shows I/O port mapping.

Figure 3. I/O Port Mapping

Conclusion

The MicroBlaster FPP embedded configuration source code is modular so you can easily port it to other
platforms. It offers a simple, inexpensive embedded system to accomplish FPP configuration for Altera
PLDs.

Configuring the MicroBlaster Fast Parallel Software Driver Altera Corporation

 8

101 Innovation Drive

San Jose, CA 95134

(408) 544-7000

www.altera.com

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions

Company, the stylized Altera logo, specific device designations, and all other words and logos that

are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and

service marks of Altera Corporation in the U.S. and other countries.* All other product or service

names are the property of their respective holders. Altera products are protected under numerous

U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera

warrants performance of its semiconductor products to current specifications in accordance with

Altera’s standard warranty, but reserves the right to make changes to any products and services at

any time without notice. Altera assumes no responsibility or liability arising out of the application or

use of any information, product, or service described herein except as expressly agreed to in

writing by Altera Corporation. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products

or services.

