
June 2011 Altera Corporation

AN-446-2.0

© 2011 Altera Corporation. Al
QUARTUS and STRATIX are
All other trademarks and serv
www.altera.com/common/le
accordance with Altera’s stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Debugging Nios II Systems with the
SignalTap II Embedded Logic Analyzer
Application Note
This application note guides you to debug your system design using dynamic
information provided during software execution by the Nios® II processor. A short
tutorial demonstrates how to use the Nios II plug-in, SignalTap® II Logic Analyzer,
and Nios II Software Build Tools (SBT) for Eclipse to trigger on, capture, and trace the
signals which illuminate the LEDs.

Introduction
As FPGA system designs become more complex and system focused—with
increasing numbers of processors, peripherals, buses, and bridges—designers need
better and more sophisticated system-level debug tools. Altera's SignalTap II
Embedded Logic Analyzer provides real-time hardware debugging capabilities by
embedding a logic analyzer in the system. The Nios II plug-in for the SignalTap II
Embedded Logic Analyzer extends the SignalTap II system debugging capabilities by
enabling the capture of a Nios II processor's program execution.

The Nios II plug-in extends the capabilities of the SignalTap II Embedded Logic
Analyzer, enabling you to easily trigger on and capture instruction trace data that the
Nios II processor core executes. You can specify an instruction-trace trigger, which
triggers the SignalTap II Logic Analyzer when the processor reaches a specific
address, by entering a symbol name from your program, or specify your own
SignalTap II trigger condition. The Nios II plug-in automatically correlates the
processor trace with a specified software image, providing you with a symbol name
and an offset view of the trace, along with decoded Nios II machine language
operation codes (opcodes).

Prerequisites
The goal of this application note is to teach you how to use the Nios II plug-in in the
SignalTap II framework. This application note assumes that you are familiar with
certain Altera® software tools, including the basic use of the SignalTap II Embedded
Logic Analyzer.

This application note assumes that you are familiar with the use of the Quartus® II
software, Qsys, and Nios II embedded processor, and the basic capabilities and
features of the SignalTap II Embedded Logic Analyzer. Because the Nios II plug-in is
an extension of the SignalTap II Logic Analyzer, the basic use of the plug-in is nearly
identical to that of the SignalTap II Logic Analyzer.

In addition, the tutorial in this application note assumes you have access to certain
Altera tools and intellectual property (IP).
Subscribe

l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
ice marks are the property of their respective holders as described at
gal.html. Altera warrants performance of its semiconductor products to current specifications in
ard warranty, but reserves the right to make changes to any products and services at any time

s no responsibility or liability arising out of the application or use of any information, product, or
t as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=AN-446
http://www.altera.com/common/legal.html

Page 2 The Nios II Plug-In
f For more information about the SignalTap II configuration options and user modes,
refer to the Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

Tool Requirements
Using the Nios II plug-in requires the following tools:

■ Quartus II software version 11.0 or later

■ Nios II Embedded Development Suite 11.0 or later

Completing the tutorial at the end of this application note requires the following
additional resources:

■ Nios II Development Kit

■ USB-Blaster™ cable

■ The an446_signal_tap_test.zip file (available as a downloadable file with this
application note)

For more detailed information about the hardware and software required for the
tutorial, refer to “Tutorial: Using the Nios II Plug-In” on page 10.

The Nios II Plug-In
The Nios II plug-in is a debugging extension to the SignalTap II Embedded Logic
Analyzer. It enables you to capture the opcodes executed by a Nios II embedded
processor. The Nios II plug-in operates by instantiating debug nodes inside the Nios II
processor's ALU. The Nios II plug-in supports all variants of the Nios II processor
core.

Each Nios II plug-in instantiation is associated with a specific Nios II processor, and
can operate with other Nios II plug-in instantiations and with other SignalTap II
instances.

You can specify the following types of trigger conditions:

■ Instruction address

■ Symbol name (function) present in the Nios II Executable and Loadable Format
(.elf) file

■ Symbol name plus an offset

The plug-in decodes all the instructions to a human-readable format. Instruction
addresses translate to symbol name plus address offset (if possible), and instruction
opcodes translate to their equivalent assembly language mnemonics.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

http://www/literature/hb/qts/qts_qii53009.pdf

The Nios II Plug-In Page 3
Quartus II Project and SignalTap II Logic Analyzer Set-Up
You must create and configure a SignalTap II File (.stp) in your Quartus II project for
use with the Nios II plug-in. To add the .stp to your system, follow these steps:

1. On the Quartus II File menu, click New.

2. In the New dialog box, in the Verification/Debugging Files category, click
SignalTap II Logic Analyzer File.

3. Click OK.

Alternatively, you can create a new or existing .stp by performing the following steps:

■ On the Quartus II Tools menu, click SignalTap II Logic Analyzer.

After you perform these steps, a SignalTap II window appears.

The Nios II plug-in currently does not support Quartus II projects if you enabled the
incremental compilation option. Therefore, you must disable incremental compilation
in your Quartus II project. To disable incremental compilation, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, expand Compilation Process Settings and click
Incremental Compilation.

3. Under Incremental Compilation, select Off.

4. Click OK.

Adding the Nios II Plug-In
When you add the Nios II plug-in to your system, you must specify the Nios II
processor you wish to monitor and, optionally, the processor's software image
(an .elf). The Nios II plug-in processes the .elf to extract symbol information. The
plug-in uses the .elf during configuration to specify trigger conditions.

To add the Nios II plug-in to your system, follow these steps:

1. In the Quartus II window, on the Processing menu, point to Start, and then click
Start Analysis & Elaboration.

2. In the SignalTap II window, right-click in the SignalTap II node list. Point to Add
Nodes with Plug-In and click Nios II. The Select Hierarchy Level dialog box
appears.

3. In the Select Hierarchy Level dialog box, select the Nios II processor instance you
want to monitor with the plug-in.

4. Click OK. The Plug-In Options dialog box appears.

5. In the Plug-In Options dialog box, optionally specify the location of the .elf.

1 Two Nios II plug-in instances cannot monitor the same Nios II processor. If you
attempt to add more than one instance of the Nios II plug-in per processor, an error
message appears.

6. Click OK.
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Page 4 The Nios II Plug-In
You can change the .elf that the Nios II plug-in uses at any time by performing the
following steps:

1. In the SignalTap II window, click the Setup tab.

2. In the SignalTap II node list, right-click on the Nios II plug-in instance you want to
modify and click Plug-In Options. The configuration options for the Nios II
plug-in appear.

1 The Nios II SBT for Eclipse generates the .elf during the software build process.
Usually, you can locate the .elf for your software project in the software/app/
directory that the Nios II SBT for Eclipse created. You can also create an .elf in the
Nios II SBT flow.

Specifying Trigger Conditions
Unlike standard SignalTapII Logic Analyzer trigger conditions, which are described
as hardware or logic events, the Nios II plug-in's trigger conditions are specified as
instruction addresses. The Nios II plug-in triggers when the Nios II processor reaches
the specified instruction address during program execution.

Basic Triggering
In basic triggering mode, the Nios II plug-in uses a processor-visible system address
as the trigger to begin trace capture. To set the trigger, click the Trigger Conditions
column in the Nios II plug-in and type an instruction address.

You can type any of the following supported trigger conditions:

■ Hexadecimal integer: 0x<32-bit number> (for example, 0x20000000)

■ .elf symbol: <string> —An alphanumeric C/C++ function name that appears as a
symbol in the .elf (for example, foo)

■ .elf symbol + offset: <string>+<hexadecimal number> (for example, foo+0x80)

To specify a trigger condition with a symbol name option you must configure the
Nios II plug-in with a Nios II processor .elf. If the .elf does not contain the specified
symbol name, an error message appears and the trigger condition field is set to an
undefined value. When you type a value in the trigger condition field, the Nios II
plug-in examines the contents of the reference .elf for any changes. This check
guarantees that the trigger conditions remain synchronized with the .elf contents,
even if the .elf is changing frequently, such as during software debugging.

To determine the symbols in the .elf , use one of the following methods to generate an
objdump file:

■ Turn on the CREATE_OBJDUMP option in the makefile, and then build the project.

■ After you create the .elf, in the Nios II command shell, type the following
command:

nios2-elf-objdump –s <filename>.elf r

For more information refer to “Building the Nios II Software” on page 11.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

The Nios II Plug-In Page 5
1 You can specify your standard SignalTapII Logic Analyzer trigger conditions in the
SignalTap II window by right-clicking on the Trigger Conditions column and
selecting a trigger pattern. However, you should enter your Nios II plug-in trigger
conditions manually for clarity.

Not specifying an address trigger condition for the Nios II plug-in has the same effect
as not specifying a trigger condition in a normal SignalTap II instance. If you specify
no trigger condition, the logic analyzer triggers immediately and the displayed data is
not useful.

Multiple Triggers
The Nios II plug-in supports the SignalTap II multiple trigger conditions feature, and
are incorporated as part of a more complex capture sequence. You can include the
Nios II plug-in trigger pattern as a part of any SignalTap II trigger condition.

Advanced Triggers
You can create complex triggers with the SignalTap II Advanced Trigger option.
However, the Nios II plug-in loses much of its benefit when you use this option. The
signal groupings contained in the Nios II plug-in appear in the Advanced Trigger
Configuration Editor, in which they are treated as normal signals. The Advanced
Trigger Configuration Editor lacks the Nios II plug-in's capability to trigger by
address or symbol.

Power-Up Triggers
You can use the Nios II plug-in with the SignalTap II power-up trigger feature.
Because power-up triggers are enabled before the SignalTap II Logic Analyzer is
started manually, they are useful for monitoring systems in which the Nios II
processor operates in self-booting mode, that is, immediately after configuring the
FPGA. In these cases, the Nios II processor begins software execution directly from
system memory without the aid of a debugger to start, stop, and load the processor's
run-time memory.

Assigning the Acquisition Clock
You must specify a clock signal to control the acquisition of samples. Specify the clock
signal in the Signal Configuration pane of the SignalTap II window. Altera
recommends that you select the clock signal that the Nios II processor uses as the
SignalTap II acquisition clock. Using the Nios II processor clock ensures that the
captured instruction trace data accurately corresponds to the instruction execution of
the Nios II processor.
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Page 6 Running a Capture Session
Selecting Sample Depth, Memory Type, and Buffer Acquisition Mode
For the Nios II plug-in, just as for the SignalTap II Logic Analyzer, you must configure
the sample depth, memory type, and buffer acquisition mode for the capture session.
These configuration options behave as they would in a normal SignalTap II Logic
Analyzer capture session, and are accessible through the Signal Configuration pane.

Exercise care when selecting the Sample Depth size. The Nios II plug-in requires
many signals to be captured for every sample taken, quickly depleting available
memory resources. Use the SignalTap II built-in resource estimator to gain a better
understanding of how adjusting the sample depth parameter impacts your design.

Design Compilation and Programming the Target Device
The Nios II plug-in is compiled in the Quartus II design with the SignalTap II Logic
Analyzer. However, because the Nios II plug-in does not support the Quartus II
incremental compilation option, you must perform a full compilation of the
Quartus II project after adding the plug-in.

After compilation, you can program the FPGA target device with the SRAM Object
File (.sof) from the SignalTap II window just as you would if you are not using a
Nios II plug-in.

Running a Capture Session
You can perform data acquisition with the Nios II plug-in the same way that you
gather data with the SignalTap II Logic Analyzer. First, program the FPGA with the
.sof that the Quartus II software generates. Next, run SignalTap II analysis, either
manually through the SignalTap II Instance Manager, or automatically when the
FPGA is programmed and power-up triggering is selected. If the system meets the
trigger conditions, the SignalTap II Logic Analyzer displays the acquired data in the
SignalTap II results window.

You can use the Nios II plug-in in two different types of data capture sessions, one
with the Nios II SBT for Eclipse and the other in stand-alone mode.

Performing Data Capture with the Nios II SBT for Eclipse
To use the Nios II plug-in with the Nios II SBT for Eclipse, you must manually
download a Nios II software image and control the operation of the processor through
the debugger. You can perform this type of capture session when you are developing
and debugging a Nios II software application.

To run a SignalTap II capture session with the Nios II processor controlled by the
Nios II SBT for Eclipse, follow these steps:
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

Running a Capture Session Page 7
1. In the SignalTap II window, program the FPGA target device with the .sof
generated by the Quartus II software, by performing the following steps:

a. On the Hardware menu, select the programming cable that is connected to
your Nios II development board.

b. In the SOF Manager field, click browse.

c. In the Select Programming File dialog box, select the .sof generated for your
project.

d. Click Open. The Program Device button is now available.

e. Click the Program Device button to download the .sof to the FPGA.

2. In the SignalTap II window, in the Instance Manager pane, click the Run Analysis
button to start the logic analyzer capture session.

3. In the Nios II SBT for Eclipse, right-click on the name of the software project you
want to run on the Nios II processor and click Debug As, then Nios II Hardware.
This action starts the debugger, downloads the .elf into system memory, and halts
the processor on the entry point to main().

4. On the Debug tab, click the Resume button to start the Nios II processor
execution.

The SignalTap II Logic Analyzer continues running until the trigger condition
specified in the Nios II plug-in is reached. While the SignalTap II Logic Analyzer is
running, you can the Nios II SBT for Eclipse debug features safely (for example, you
can set breakpoints and stop the processor).

When you launch the debugger, the Nios II plug-in is triggered if the processor
advances to the trigger address. If the start-up breakpoint location occurs after the
trigger address location specified for the Nios II plug-in, it may cause a false hit by the
debugger. To change the breakpoint start-up location for the debugger, follow these
steps in the Nios II SBT for Eclipse:

1. On the Run menu, click Debug Configurations. The Debug Configurations
window appears.

2. In the Debug Configurations window, click the Debugger tab.

3. Select the breakpoint location(s) from which you want the Nios II SBT for Eclipse
debugger run, and click Apply.

1 Alternatively, instead of using the Debug As option, you can use the Run As option.
Using the Run As option causes the Nios II SBT for Eclipse to download and run the
software image from system memory without starting the debugger feature of the
Nios II SBT for Eclipse.
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Page 8 Analyzing Results
Performing Data Capture Without External Software Download
If your Nios II processor based system is configured to be self-booting, without the
need for an external software download, and you have selected the SignalTap II
power-up trigger feature, the SignalTap II Logic Analyzer begins running
automatically when the FPGA is programmed.

In this case, the SignalTap II Logic Analyzer may already have captured data
available. To determine if captured data is available, or if the logic analyzer is still
running, click Run Analysis in the SignalTap II instance manager.

f For more information about creating a self-booting Nios II processor system, refer to
the Nios II Software Developer's Handbook.

Analyzing Results
The Nios II plug-in allows you to view the captured Nios II processor trace data. This
section describes several of the post-capture features of the Nios II plug-in.

Viewing the Data
Captured SignalTap II data appears in the Data tab of the SignalTap II window. Every
sample captured by the Nios II plug-in displays the following information:

■ Address—The instruction address location in hexadecimal format. Additionally, if
an .elf was specified during plug-in configuration, the instruction address may be
further resolved into symbol name and offset.

■ Assembly Language Mnemonic—The Nios II assembly language equivalent of
the binary opcode for the instruction.

If you specified an .elf during the plug-in configuration, the software reexamines the
file immediately after data acquisition completes, and converts the instruction
addresses to the symbol name and offset representation. This reexamination helps to
safeguard against the inadvertent use of old software images.

Using the SignalTap II tab controls, you can scroll through the program execution of
the Nios II processor. If the specified acquisition clock corresponds to the Nios II
processor clock, every rising clock edge corresponds to a new instruction cycle.

You may notice one or more “empty” instruction entries in the trace data gathered by
the Nios II plug-in. These entries indicate that no instruction was executed by the
Nios II processor during that particular clock cycle. This behavior is normal, and can
occur for the following reasons:

■ Cache Miss—The requested instruction address location generates a miss in the
instruction cache, and additional clock cycles are required to fill the cache line and
return the instruction.

■ Memory Contention or Speed—The instruction address location is in memory
that requires multiple clock cycles to access, or in memory that is currently
controlled by another peripheral or processor.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Analyzing Results Page 9
You can also view the Nios II plug-in trace data in the SignalTap II list file format. In
this tabular format, the trace samples are displayed chronologically in rows, decoded
by sample number and the associated assembly language mnemonic. The list file
format is useful because it is similar to the output format of the
nios2-elf-objdump command, simplifying the analysis process. To create the
SignalTap II list file, on the File menu, point to Create/Update and click Create
SignalTap II List File.

f Some Nios II processor instructions consume multiple clock cycles when they are
executed. For more information about the number of clock cycles required for a
particular instruction, refer to the Nios II Core Implementation Details chapter of the
Nios II Processor Reference Handbook.

Correlating Trace Data to the .elf of the Processor
You can compare the captured Nios II plug-in instruction trace to the software image
executed by the Nios II processor by examining the contents of the objdump file.

You can use the nios2-elf-objdump command to create the objdump file. This
command copies the .elf of the processor to the human-readable format of the
objdump that contains C/C++ code fragments, symbolic function names, assembly
instructions, and address locations.

The nios2-elf-objdump command-line executable is included as a part of the
Nios II Embedded Design Suite. You can configure the tool with a series of command
line options. For a list of conversion options for the nios2-elf-objdump command,
in a Nios II command shell, type the following command:

nios2-elf-objdump --help r

Although the objdump file contains vast amounts of information decoded from the
.elf, the Nios II processor's instructions appear one per line in this file, in the
following format:

<Address>: <opcode> <Assembly Mnemonic>

For example, a valid instruction is:

200a8c0: e0800417 ldw r2,16(fp)

Saving and Converting Captured Data
You can save any data captured by the Nios II plug-in with the SignalTap II data log
feature. The Nios II plug-in data sets are stored with the processor's .elf information.
To enable data logging, turn on the Data Log option in the SignalTap II window.

The Nios II plug-in also supports the SignalTap II data conversion feature. To export
captured data, on the File menu, click Export and specify the File Name, the Export
Format, and the Clock Period.
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf

Page 10 Tutorial: Using the Nios II Plug-In
Tutorial: Using the Nios II Plug-In
This tutorial shows you how to use the Nios II plug-in for the SignalTap II Logic
Analyzer to trace the signals which illuminate the LEDs on a Nios II development
board. The tutorial explains how to set up and configure the Nios II plug-in, how to
use the plug-in during the Nios II software debug cycle (Nios II SBT for Eclipse), and
how to perform an analysis of the data captured using the .elf as a reference.

Hardware and Software Requirements
To complete this tutorial you must have the following:

■ Quartus II software version 11.0 or higher—Both the Quartus II Web Edition and
the fully licensed version works with the design example.

■ Nios II Embedded Development Suite (EDS) version 11.0 or higher

■ Nios II Development Kit—You can use any Altera Nios II development kit listed
on the Nios II Ethernet Standard Design Example page. The following
development kits support this design:

■ Nios II Embedded Evaluation Kit, Cyclone III Edition

■ Cyclone III FPGA Development Kit

■ Stratix IV GX FPGA Development Kits

■ Software file—Download an446_signal_tap_test.zip to a folder on your hard
drive. This software file can be found on
www.altera.com/support/examples/nios2/exm-debug-signaltap.html.

■ USB-Blaster cable

Hardware Project Set-Up
You must first create the system hardware containing the Nios II processor and
configure the Quartus II project for the Nios II plug-in.

Setting Up the Development Board
Make sure that your Nios II development board has power and is connected to your
workstation through the USB-Blaster cable.

Configuring the Quartus II Software
To configure the Quartus II software, perform the following steps:

1. Download and extract the Nios II design example for your particular board to a
location in which you can edit it. You can download the design example from the
Nios II Ethernet Standard Design Example page.

2. Open the Quartus II software.

3. On the File menu, click Open Project.

4. Browse to the location where you extracted the design example. This is your
project directory.

5. Select the <your-nios2-board-type>.qpf project file.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/support/examples/nios2/exm-debug-signaltap.html
http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Tutorial: Using the Nios II Plug-In Page 11
6. Click Open.

Generating Nios II Hardware
You must regenerate the downloaded design example using Qsys before you can
properly compile the design example in the Quartus II software.

1. On the Tools menu, click Qsys.

2. In Qsys, open the eth_std_main_system.qsys file, then, click Generate under the
Generation tab. This action rebuilds the hardware for the design example.

1 This operation may take a few minutes to complete.

3. After generation completes, quit Qsys.

Nios II Software Set-Up
You can now use the Nios II command shell to compile your software application and
generate the .elf and objdump files. After the files are generated, you can identify the
trigger location that you want to use for the Nios II plug-in.

Building the Nios II Software
To build the software application and generate an objdump file, perform the
following steps:

1. Open a Nios II command shell.

2. Change to your project directory.

3. Copy the directory count_binary extracted from an446_signal_tap_test.zip to the
software/app directory.

4. Copy the directory count_binary_bsp extracted from an446_signal_tap_test.zip
to the software/bsp directory.

5. Change to the directory software/app/count_binary.

6. Create the application project makefile and build the project by typing the
following command to run the script create-this-app:

./create-this-app r

This step also creates the .elf and objdump files.
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Page 12 Tutorial: Using the Nios II Plug-In
Importing the Software Project to the Nios II SBT for Eclipse
To debug your project in the Nios II SBT for Eclipse, you must first import it. To
import your software project to the Nios II SBT for Eclipse, perform the following
steps:

1. Open the Nios II SBT for Eclipse.

2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Nios II Software Build Tools Project folder.

4. Click Import Nios II Software Build Tools Project.

5. Click Next. The Import wizard appears.

6. Browse to your software/app/count_binary directory.

7. Click OK. The Import wizard fills the project name and path fields.

8. In the Project name field, change the project name to count_binary by typing
count_binary.

9. Click Finish.

Finding the Instruction Trigger Condition
The Nios II plug-in should trigger on the first write to the LEDs Parallel
Input/Output (PIO) peripheral, immediately after the entry point to the main()
function. To identify the address of the assembly instruction that writes to the LEDs
PIO, use the objdump file generated during software compilation.

The objdump file format contains a human-readable version of the program you just
compiled. It shows the C instructions with the corresponding assembly instructions
and their locations in the Nios II processor's address space. By locating the C
instruction responsible for the write operation to the LEDs PIO, and then examining
the assembly instructions that correspond to the C instruction, you can retrieve the
address for the assembly instruction responsible for the write to the LEDs PIO. To do
so, perform the following steps:

1. Expand the count_binary folder in the Project Explorer tab.

2. Right-click on the count_binary.objdump file and click Open.

3. On the Edit menu, click Find/Replace.

4. In the Find field of the Find/Replace dialog box, type count_led(). This string is
the C function call to illuminate the LEDs with the value of the current count.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

Tutorial: Using the Nios II Plug-In Page 13
5. Click Find. The line containing count_led() is highlighted, as shown in
Figure 1.

6. Scroll down until you find the line containing the stwio r3,0(r2) assembly
instruction, and note the address to the left of the instruction. This instruction
corresponds to the Nios II processor's write to the LEDs PIO. In this example, the
address for this instruction is 0x1000038c. However, in your particular case this
address may be different. You can use the address of this instruction as a trigger
for the Nios II plug-in to begin capturing instruction trace data.

In this example, when the Nios II processor executes the assembly instruction stwio
r3,0(r2), it writes to the LEDs PIO, which then illuminates the LEDs with the value
of the current count.

Figure 1. Nios II Objdump View
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Page 14 Tutorial: Using the Nios II Plug-In
You can identify the write instruction from the following indicators:

■ The instruction appears in the block of assembly instructions that correspond to
the following C instruction:
IOWR_ALTERA_AVALON_PIO_DATA(PERIPHERAL_SUBSYSTEM_LED_PIO_BASE, count)

■ The other assembly instructions contained in the block perform operations only on
the Nios II processor's registers.

■ The assembly language instruction stwio performs a store-word operation to a
peripheral.

f For information about assembly language instructions, refer to the Instruction Set
Reference chapter of the Nios II Processor Reference Handbook.

Configuring the Hardware Project
You can configure the Nios II plug-in for operation in the SignalTap II Logic Analyzer.
To do so, perform the following steps in the Quartus II software:

1 In the project downloaded from the Nios II Ethernet Standard Design Example page,
Incremental Compilation is already turned off.

1. On the Processing menu, point to Start and click Start Analysis & Elaboration.

1 This operation may take a few minutes to complete.

2. On the Tools menu, click SignalTap II Logic Analyzer.

3. Right-click in the SignalTap II node list. Point to Add Nodes with Plug-In and
click Nios II. The Select Hierarchy Level dialog box appears.

4. In the Select Hierarchy Level dialog box, select
eth_std_main_system:eth_std_main_system_inst|eth_std_main_system_cpu:cp
u.

5. Click OK. The Plug-In Options dialog box appears.

6. In the Plug-In Options dialog box, click the browse button next to the Setting text
field.

7. In the Select File dialog box, browse to the location of the .elf you compiled in the
Nios II command shell. This .elf should be present in your
software/app/count_binary directory and be named count_binary.elf. Select the
file.

8. Click Open. The Select File dialog box closes.

9. Click OK. The Plug-In Options dialog box closes.

10. In the Trigger Conditions column for the Nios II plug-in, enter the address that
corresponds to the write to the LEDs PIO. In this example, the address is
0x1000038c for the trigger condition, as shown in Figure 1 on page 13.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Tutorial: Using the Nios II Plug-In Page 15
11. Add the LEDs PIO data signal to the node list by performing the following steps:

a. Right-click on the node list pane and click Add Nodes.

b. Ensure that the Look in field is set to
|top_level|eth_std_main_system:eth_std_main_system_inst| and the
Named field contains *led*.

c. Ensure that the Filter field is set to SignalTap II: pre-synthesis.

d. Click List.

e. In the Nodes Found pane, double-click the node
led_pio_external_connection_export. The node is added to the Selected
Nodes pane.

f. Click OK.

12. In the Signal Configuration pane, click the browse button next to the Clock text
field to bring up the Node Finder dialog box.

13. In the Node Finder dialog box, perform the following steps:

a. Click the browse button next to the Look in text field. The Select Hierarchy
Level dialog box appears.

b. In the Select Hierarchy Level dialog box, expand the hierarchy list under
|top_level|eth_std_main_system:eth_std_main_system_inst|.

c. In the expanded hierarchy list, click the entity eth_std_main_system_cpu:cpu.

d. Click OK to close the list.

e. Ensure that the Filter field is set to SignalTap II: pre-synthesis.

f. In the Node Finder, click List to list all the nodes.

g. Double-click the node clk to add it to the Selected Nodes field.

h. Click OK. The Node Finder dialog box closes.

14. In the Signal Configuration pane, set the Sample Depth field to 256.

15. In the Quartus II window, on the Processing menu, click Start Compilation to
build the hardware for the project. If you are prompted to save the SignalTap II
instance and enable the SignalTap II Logic Analyzer for this project, click Yes.

1 You must save the .stp in your project directory.

1 The Quartus II hardware design may take a few minutes or longer to
compile.
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Page 16 Tutorial: Using the Nios II Plug-In
Running the Trace Capture Session
You can use the generated system to run a trace capture session with the Nios II
plug-in by performing the following steps:

1. In the SignalTap II window, in the JTAG Chain Configuration pane, perform the
following steps:

a. On the Hardware menu, select the programming cable that is connected to
your Nios II development board.

b. In the SOF Manager field, click the browse button.

c. In the Select Programming File dialog box, browse to your project directory
and select the .sof.

d. Click Open. The Program Device button is now available.

e. Click the Program Device button to download the .sof to the FPGA.

2. In the SignalTap II window, in the Instance Manager pane, click the Run Analysis
button to start the logic analyzer capture session.

The analysis should stop with the Status in the Instance Manager pane set to
Waiting for trigger.

3. In the Nios II SBT for Eclipse, select the project count_binary in the Projects list.

4. In the Nios II SBT for Eclipse, on the Run menu, click Debug As then click 2 Nios
II Hardware.

5. In the Confirm Perspective Switch dialog box, click Yes.

6. In the Nios II SBT for Eclipse, in the Debug pane, click the Resume button to start
the Nios II processor execution.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

Tutorial: Using the Nios II Plug-In Page 17
7. Check the SignalTap II window to verify that the capture session has terminated
because the Nios II plug-in's trigger conditions were met. Your SignalTap II
window should resemble Figure 2.

Analyzing the Captured Data
You can now analyze the data captured by the Nios II plug-in and compare it to the
objdump of the Nios II .elf. The data samples from the Nios II plug-in should
correspond exactly to the assembly language program listed in the
count_binary.objdump file.

Figure 2 demonstrates the following results:

■ The 0th sample captured by the Nios II plug-in matches the trigger condition you
set up, capturing instruction stwio r3,0(r2).

Figure 2. SignalTap II Post Capture Window
June 2011 Altera Corporation Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Page 18 Conclusion
Conclusion
As FPGA designs continue to increase in size and complexity, with increasing
numbers of embedded processors, peripherals, buses, and bridges, designers need
more comprehensive debugging tools to reduce system development time. The
Nios II plug-in for the SignalTap II Embedded Logic Analyzer enables the capture of a
program execution of a Nios II processor. Because the Nios II plug-in works together
with the SignalTap II Logic Analyzer, the instruction trace from the Nios II processor
is captured with other hardware events. The display of the processor instructions
allows you to find system design problems efficiently.

Document Revision History
Table 1 shows the revision history for this document.

Table 1. Document Revision History

Date Version Changes

June 2011 2.0

This revision incorporates the following changes:

■ Replaced all references to Nios II Integrated Development Environment (IDE) with Nios II
Software Build Tools for Eclipse.

■ Replaced all references to SOPC Builder with Qsys.

■ Updated Figure 1 and Figure 2.

■ Updated “Tool Requirements” on page 2, “Performing Data Capture with the Nios II SBT
for Eclipse” on page 6, “Tutorial: Using the Nios II Plug-In” on page 10, “Hardware and
Software Requirements” on page 10, and “Hardware Project Set-Up” on page 10.

June 2008 1.2

This revision incorporates the following changes:

■ Updated the “Tutorial: Using the Nios II Plug-In” section for the Nios II software build
flow, including removal of many Nios II IDE screenshots.

■ Replaced the Count Binary design example with the signal_tap_test example.

October 2007 1.1

This revision incorporates the following changes:

■ Replaced all references to bit_bang_uart.c with signal_tap_test.c

■ Replaced the associated design file bit_bang_uart.c with the file signal_tap_test.c

May 2007 1.0 Initial release.
Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer June 2011 Altera Corporation

	Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer
	Introduction
	Prerequisites
	Tool Requirements

	The Nios II Plug-In
	Quartus II Project and SignalTap II Logic Analyzer Set-Up
	Adding the Nios II Plug-In
	Specifying Trigger Conditions
	Basic Triggering
	Multiple Triggers
	Advanced Triggers
	Power-Up Triggers

	Assigning the Acquisition Clock
	Selecting Sample Depth, Memory Type, and Buffer Acquisition Mode
	Design Compilation and Programming the Target Device

	Running a Capture Session
	Performing Data Capture with the Nios II SBT for Eclipse
	Performing Data Capture Without External Software Download

	Analyzing Results
	Viewing the Data
	Correlating Trace Data to the .elf of the Processor
	Saving and Converting Captured Data

	Tutorial: Using the Nios II Plug-In
	Hardware and Software Requirements
	Hardware Project Set-Up
	Setting Up the Development Board
	Configuring the Quartus II Software
	Generating Nios II Hardware

	Nios II Software Set-Up
	Building the Nios II Software
	Importing the Software Project to the Nios II SBT for Eclipse
	Finding the Instruction Trigger Condition

	Configuring the Hardware Project
	Running the Trace Capture Session
	Analyzing the Captured Data

	Conclusion
	Document Revision History

