
101 Innovation Drive
San Jose, CA 95134
www.altera.com

TU-N2033005-2.0

Tutorial

Creating Multiprocessor Nios II Systems

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
June 2011

Subscribe

Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=TU-N2033005

Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

June 2011 Altera Corporation
Contents
Chapter 1. Creating Multiprocessor Nios II Systems
Introduction to Nios II Multiprocessor Systems . 1–1
Benefits of Hierarchical Multiprocessor Systems . 1–2
Nios II Multiprocessor Systems . 1–2
Multiprocessor Tutorial Prerequisites . 1–3
Hardware Designs for Peripheral Sharing . 1–3

Autonomous Multiprocessors . 1–3
Multiprocessors that Share Peripherals . 1–4

Sharing Peripherals in a Multiprocessor System . 1–4
Sharing Memory . 1–6
The Hardware Mutex Core . 1–7
Sharing Peripherals . 1–8
Overlapping Address Space . 1–8

Software Design Considerations for Multiple Processors . 1–9
Program Memory . 1–9
Boot Addresses . 1–13
Debugging Nios II Multiprocessor Designs . 1–15

Design Example: The Dining Philosophers’ Problem . 1–15
Hardware and Software Requirements . 1–16
Installation Notes . 1–17
Creating the Hardware System . 1–17

Getting Started with the multiprocessor_tutorial_start Design Example 1–17
Viewing a Philosopher System . 1–18
Philosopher System Pipeline Bridges . 1–19
Adding Philosopher Subsystems . 1–21
Connecting the Philosopher Subsystems . 1–22
Viewing the Complete System . 1–27
Generating and Compiling the System . 1–28

Creating Software for the Multiprocessor System . 1–29
Building and Running the Applications from the Command Line . 1–29

Building and Launching the Applications . 1–29
Viewing and Controlling Applications from the Command Line . 1–31

Debugging the Applications in the Nios II SBT for Eclipse . 1–33
Starting the Nios II SBT for Eclipse . 1–33
Importing the Software Projects . 1–34
Building the Software Projects . 1–34
Launching nios2-terminal for stdio Connections . 1–34
Creating and Running a Launch Configuration for Each Processor . 1–35
Debugging the Software Projects on the Board . 1–36

Conclusion . 1–38

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
Creating Multiprocessor Nios II Systems Tutorial

iv Contents
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

June 2011 Altera Corporation
1. Creating Multiprocessor Nios II
Systems
This tutorial demonstrates the features of the Altera® Nios® II processor and Qsys
system integration tool that are useful for creating systems with multiple processors.
The tutorial provides a design example that guides you through stitching together
subsystems in a hierarchical design. Using Qsys, you build a multiprocessor system
containing six processors. Each processor is in a subsystem, creating a hierarchy with
six subsystems with a shared memory map, coordinated with pipeline bridges. This
system demonstrates a solution for the classic Dining Philosophers’ Problem.

This tutorial shows you how to use the Nios II Software Build Tools (SBT) to create,
build, download, and view stdio output in a console for six applications, using shell
scripts. It includes steps to import and debug those applications in the Nios II SBT for
Eclipse.

f Refer to the Nios II Embedded Design Suite Release Notes and Errata and the MegaCore IP
Library Release Notes and Errata for the latest features, enhancements, and known
issues in the current release.

Introduction to Nios II Multiprocessor Systems
Any system that incorporates multiple microprocessors working together to perform
one or more related tasks is commonly referred to as a multiprocessor system. Using
the Altera Nios II processor and Qsys tool, you can quickly design and build
multiprocessor systems that share peripherals safely. Qsys is a system development
tool for creating FPGA designs that can include processors, peripherals, and
memories. A Nios II processor system typically refers to a system with a processor
core, a set of on-chip peripherals, on-chip memory, and interfaces to off-chip memory
all implemented on a single Altera device.

This document describes the features of the Nios II processor and Qsys tool that are
useful for creating systems with multiple processors. This document provides a
design example that guides you through stitching together subsystems, each
containing a Nios II processor, timer, clock, JTAG UART, and hardware mutex
component. You build a multiprocessor system containing six processors that share
mutex peripherals in a hierarchical design. You execute scripts that invoke the
Nios II SBT to build and download software for each processor, and view each
processor’s stdio output in a console. Then you import six software application and
board support package (BSP) projects to the Nios II SBT for Eclipse, and use the
Nios II SBT for Eclipse to debug them.

After completing this tutorial, you will have the knowledge to perform the following
tasks:

■ Create hierarchical Qsys systems containing multiple Nios II processors, using
pipeline bridges to access peripherals in neighboring subsystems.

■ Ensure integrity by safely sharing peripherals between processors, preventing
data corruption.
Creating Multiprocessor Nios II Systems Tutorial

www.altera.com/literature/rn/rn_nios2eds.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

1–2 Chapter 1: Creating Multiprocessor Nios II Systems
Benefits of Hierarchical Multiprocessor Systems
■ Build, download, and interact with software for multiprocessor systems using the
Nios II SBT with shell scripts.

■ Debug multiple software projects running on multiple processors simultaneously
using the Nios II SBT for Eclipse.

Benefits of Hierarchical Multiprocessor Systems
Multiprocessor systems possess the benefit of increased performance, but nearly
always at the price of significantly increased system complexity for both hardware
and software. The idea of using multiple processors to perform different tasks and
functions on different processors in real-time embedded applications is gaining
popularity. Altera FPGAs provide an ideal platform for developing embedded
multiprocessor systems, because the hardware can easily be modified and tuned
using the Qsys tool to provide optimal system performance. Increases in the size of
Altera FPGAs make possible system designs with many Nios II processors on a single
chip. Furthermore, with a powerful integration tool like Qsys, different system
configurations can be designed, built, and evaluated very quickly. Qsys enables
hierarchical designs, reducing system complexity through compartmentalization of
the design into discrete subsystems. Each subsystem exports user-defined interfaces,
linking the subsystem hierarchy together.

Nios II Multiprocessor Systems
The Nios II SBT for Eclipse includes features to help with the creation and debugging
of multiprocessor systems. Multiple Nios II processors are able to efficiently share
peripherals thanks to the multimaster-friendly slave-side arbitration capabilities of
the Qsys interconnect. Because the capabilities of Qsys allow you to almost
effortlessly add as many processors to a system as desired, the design focus in
building multiprocessor systems no longer lies in the arranging and connecting of
hardware components. The challenge in building multiprocessor systems lies in
writing the software for those processors so they operate efficiently together, and do
not conflict with one another.

To aid in the prevention of multiple processors interfering with each other, a hardware
mutex core is included for Qsys. The hardware mutex core allows different processors
to claim ownership of a shared peripheral for a period of time. This temporary
ownership of a peripheral by a processor protects the shared peripheral from
corruption by the actions of another processor.

To prevent corruption, you must write software that waits to acquire the mutex before
it accesses the shared peripheral, ensuring mutually exclusive access.

A nonatomic test-and-set operation has a serious risk: two processors can
simultaneously test the flag, each confirming that no processor currently has
ownership. If both processors then acquire the peripheral, they violate mutual
exclusion.

An atomic test-and-set operation avoids this risk, because it cannot be interrupted. An
atomic test-and-set allows a processor to check for ownership and acquire ownership
in a single operation.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–3
Multiprocessor Tutorial Prerequisites
The fact that the operation cannot be interrupted also ensures that an operating
system task switch cannot occur while the processor is testing and acquiring or
releasing the mutex.

The hardware mutex core provides a semaphore for mutually exclusive access to any
peripheral. The software determines that peripheral and is responsible for uniform
use of the mutex API to ensure mutually exclusive access every time the peripheral is
accessed.

For more information about mutually exclusive access to shared memory, refer to
“The Hardware Mutex Core” on page 1–7.

The Nios II SBT for Eclipse supports software debugging on multiprocessor systems,
by allowing you to start and stop multiple software debug sessions on simultaneously
running processors.

Multiprocessor Tutorial Prerequisites
This chapter assumes that you are familiar with the following topics:

■ Reading and writing embedded software for the Nios II Processor

f Read and follow the step-by-step procedures for building a microprocessor
system in the Nios II Hardware Development Tutorial, found on the Literature:
Nios II Processor page of the Altera website.

■ Multiprocessing, especially the following concepts:

■ Mutual exclusion and mutex usage

■ Concurrency

■ Synchronization

■ Hierarchical system design in Qsys

Hardware Designs for Peripheral Sharing
Nios II multiprocessor systems are split into two main categories: those that share
peripherals, and those in which each processor is autonomous and does not share
peripherals with other processors.

Autonomous Multiprocessors
While autonomous multiprocessor systems contain multiple processors, these
processors are completely autonomous and do not communicate with the others,
much as if they were completely separate systems. By design, systems of this type do
not share peripherals, and so the processors cannot interfere with each other.
Therefore, such systems are typically less complicated and pose fewer challenges.
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp

1–4 Chapter 1: Creating Multiprocessor Nios II Systems
Sharing Peripherals in a Multiprocessor System
Figure 1–1 shows a block diagram of two autonomous processors in a multiprocessor
system.

Multiprocessors that Share Peripherals
Multiprocessor systems that share peripherals can pose many challenges. There are
features in Qsys that make it possible to reliably implement multiprocessor systems
that share peripherals. However, creating such a system is not always
straightforward.

Figure 1–2 shows a block diagram of a sample multiprocessor system in which two
processors share an on-chip memory.

The next section discusses shared peripherals in detail.

Sharing Peripherals in a Multiprocessor System
Peripherals are considered shared when they can be accessed by multiple processors.
The Qsys connections panel controls which hardware components can be accessed by
each individual Nios II processor.

Shared peripherals can be a very powerful feature of multiprocessor systems, but care
must be taken when deciding which system peripherals are shared, and how the
different processors cooperate regarding the use of peripherals.

In a nonhierarchical system, peripherals can be made shareable by simply connecting
them to multiple processor master interfaces in the connection matrix of Qsys. In a
hierarchical system, peripherals can also be made shareable to processors outside of
the subsystem containing the peripheral by exporting the slave interface of the
peripheral. Processor master interfaces gain access to the peripheral through
connection in the Qsys connection matrix to the exported interface of the subsystem
containing the peripheral. A processor master interface located in a subsystem of the
hierarchy can gain access to a peripheral located in a parent system through

Figure 1–1. Autonomous Multiprocessor System

Processor 1

Processor 2

Memory 1

UART 1

Timer 1

Memory 2

UART 2

Timer 2
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–5
Sharing Peripherals in a Multiprocessor System
connection to an Avalon™ Memory-Mapped (Avalon-MM) pipeline bridge. An
Avalon-MM pipeline bridge also provides a mechanism for simultaneous connection
of a slave interface to both a processor master local to the subsystem and an external
processor master elsewhere in the hierarchy. In that case, the pipeline bridge exports
the slave interface, instead of the peripheral exporting the slave interface directly.

The software running on each processor is responsible for coordinating mutually
exclusive access to shared peripherals with the system's other processors through
employment of mutex peripherals.

Figure 1–2. Multiprocessor System with Shared Peripheral

Processor 1

Memory 1

Processor 2

Timer 2

UART 2

Memory 2

Shared
Memory

Timer 1

UART 1
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–6 Chapter 1: Creating Multiprocessor Nios II Systems
Sharing Peripherals in a Multiprocessor System
Figure 1–3 shows a sample multiprocessor system in SOPC Builder, the predecessor to
Qsys. The component listed at the bottom, shared_memory, is considered shared
because the data and instruction master ports of both processors are connected to the
same slave port of the memory. Because cpu1 and cpu2 are both physically capable of
writing blocks of data to the shared memory at the same time, the software for those
processors must be written carefully to protect the integrity of the data stored in the
shared memory.

Sharing Memory
The most common type of shared peripheral in multiprocessor systems is memory.
Shared memory can be used for anything from a simple flag whose purpose is to
communicate status between processors, to complex data structures that are
collectively computed by many processors simultaneously.

If a memory component is to contain the program memory for multiple processors,
each processor sharing the memory is required to use a separate area for code
execution. The processors cannot share the same area of memory for program space.
Each processor must have its own unique .text, .rodata, .rwdata, .heap, and .stack
sections. See “Software Design Considerations for Multiple Processors” on page 1–9
for information on how to make sure each processor sharing a memory component for
program space uses a dedicated area in that memory.

If a memory component is to be shared for data purposes, you must connect its slave
port to the data masters of the processors that are sharing the memory. In a
nonhierarchical system, make the connection directly in the connection panel. In a
hierarchical system, make a logical connection to each subsystem's exported slave
interface.

Figure 1–3. Multiprocessor System Sharing On-Chip Memory
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–7
Sharing Peripherals in a Multiprocessor System
Sharing data memory among multiple processors can be tricky because data memory
can be written as well as read. If one processor is writing to a particular area of shared
data memory at the same time another processor is reading or writing to that area,
data corruption is likely to occur, causing application errors at the very least, and
possibly a system crash.

The processors sharing memory need a mechanism to inform one another when they
are using a shared peripheral, so the other processors do not interfere. The following
section discusses such a mechanism: the Altera hardware mutex core.

The Hardware Mutex Core
The Nios II processor provides protection of shared peripherals by accessing the
hardware mutex core, which ensures only one processor has ownership of the mutex
at any given time. The hardware mutex core is not an internal feature of the Nios II
processor. It is a simple Qsys component.

The term mutex stands for mutual exclusion, and a mutex does exactly as its name
suggests. A mutex allows cooperating processors to agree that only one processor at a
time is allowed access to a particular hardware peripheral. This is useful for the
purpose of protecting peripherals from data corruption that can occur if multiple
processors attempt to use the peripheral at the same time.

The mutex core acts as a shared peripheral, providing an atomic test-and-set
operation that allows a processor to test if the mutex is available and if so, to acquire
the mutex lock in a single operation. When the processor is finished using the shared
peripheral associated with the mutex, the processor releases the mutex lock.
Thereafter, another processor can acquire the mutex lock and use the shared
peripheral. Without the mutex, this kind of function would normally require the
processor to execute two separate instructions, test and set, between which another
processor could also test for availability and succeed. This situation would leave two
processors both thinking they successfully acquired mutually exclusive access to the
shared peripheral when they did not.

1 The mutex core does not physically protect peripherals in the system from being
accessed at the same time by multiple processors. The software running on the
processors is responsible for abiding by the rules. The software must be written to
always acquire the mutex before accessing its associated shared peripheral.

f For more information about the hardware mutex core, refer to the Mutex Core chapter
in the Embedded Peripherals IP User Guide.

Another kind of mutex, called a software mutex, is common in many operating
systems for providing the same protection of peripherals. The difference is that a
software mutex is purely a software construct that is used to protect software or
hardware peripherals from being corrupted by multiple processes running on the
same processor. A hardware mutex core is a Qsys component with an Avalon
interface that uses logic to guarantee only one processor is granted the lock of the
mutex at any given time. If every processor waits until it acquires the appropriate
mutex before using the associated shared peripheral, the peripheral is protected from
potential corruption caused by simultaneous access by multiple processors. The
hardware mutex core itself has no connection to the shared peripheral; it merely
provides a semaphore.
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com/literature/ug/ug_embedded_ip.pdf

1–8 Chapter 1: Creating Multiprocessor Nios II Systems
Sharing Peripherals in a Multiprocessor System
In some cases a mutex core might not be necessary. For example, no mutex is needed
with a one-way message buffer, where one processor exclusively writes to the buffer,
and all other processors exclusively read. However, sharing peripherals safely
without a mutex core can be complicated. When in doubt, use the mutex core.

Sharing Peripherals
Sharing peripherals in multiprocessor systems presents some difficult challenges, and
is generally considered to lead to inefficient system designs. The biggest problems
arise for peripherals with interrupts. If a peripheral is allowed to interrupt all the
processors that share it, there is no reliable way to guarantee which processor
responds first and services that interrupt. Additionally, if the peripheral is used as an
input device for multiple processors, it becomes difficult to determine which
processor is supposed to collect given input from the device. While it is conceivable
that a complex system of handshaking could be created to handle these scenarios,
such a system is beyond the scope of this document, and is not provided by the
Nios II hardware abstraction layer (HAL) library.

f For more information about the Nios II HAL Library, refer to the Nios II Software
Developer's Handbook.

Memory peripherals and mutex peripherals can be accessed by multiple processors.
Altera recommends that you restrict all other peripherals to be accessible by only one
processor in the system. If other processors require use of the peripheral, it is better to
use a hardware FIFO, or a message buffer that is mutex-protected, to communicate
with the single processor that is connected to that peripheral. That single processor
acts as a server for the other processor clients of that peripheral.

When building any system, especially a multiprocessor system, it is advisable to only
make connections between processors and peripherals that require direct
communication. For instance, if a processor runs from and uses only one on-chip
memory, there is no need to connect that processor to any other memory in the
system. Physically disconnecting the processor from memories it is not using both
saves FPGA resources and guarantees the processor never corrupts those memories.

In multiprocessor systems, the need to connect various components is very
design-dependent. Therefore, when designing multiprocessor systems, verify
explicitly that each component is connected to the desired processor. Most
components are best managed by a single processor. If processor A requires the
services of a peripheral that is connected to and managed by processor B, processor A
must request of processor B that it perform operations with the peripheral on behalf of
processor A. You can use shared on-chip memory protected by a mutex for
communication between the two processors for this purpose.

Overlapping Address Space
Single-processor systems typically prohibit more than one slave peripheral from
occupying the same address space because this arrangement causes conflicts.
However, in multiprocessor systems, separate slave peripherals can occupy the same
base address without conflict, as long as each peripheral is exclusively mastered by a
different processor. Because not every slave peripheral is necessarily mastered by
every processor, each processor might have a different view of the system. If processor
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 1: Creating Multiprocessor Nios II Systems 1–9
Software Design Considerations for Multiple Processors
A is connected to a slave peripheral mapped to address 0x8a00, processor B can
connect to a separate slave peripheral, also mapped to address 0x8a00, as long as
processor A is not connected to processor B's slave peripheral and processor B is not
connected to processor A's slave peripheral. In effect, the point-to-point connectivity
allows the two processors to have separate address spaces. Figure 1–4 shows a block
diagram of a sample multiprocessor system with different slave components mapped
to the same base address.

Software Design Considerations for Multiple Processors
Creating and running software on multiprocessor systems is much the same as for
single-processor systems, but requires the consideration of a few additional points.
Many of the software design issues described in this section are dictated by the
system's hardware architecture.

Program Memory
When creating multiprocessor systems, you might want to run the software for
multiple processors from the same physical memory device. Software for each
processor must be located in its own unique region of memory, but those regions are
allowed to reside in the same physical memory device. For instance, imagine a
multiprocessor system where all processors execute from on-chip memory. The

Figure 1–4. Multiprocessor Slave Peripherals Mapped to the Same Base Address

FPGA Design

philosopher_one_cpu_one

0x00008900

0x00008800

0x04050000

0x04050000

0x00008900

0x00008800

0x00008a00

0x00008a00
philosopher_one_jtag_uart

philosopher_two_cpu_two

onchip_memory
(shared via out_system_bridge)

philosopher_two_chopstick_mutex

philosopher_two_timer

philosopher_two_jtag_uart

philosopher_one_chopstick_mutex

philosopher_one_timer
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–10 Chapter 1: Creating Multiprocessor Nios II Systems
Software Design Considerations for Multiple Processors
software for each processor requires eight kilobytes (KB) of memory for program code
and data. The first processor could use the region between 0x0 and 0x1FFF in on-chip
memory as its program space, and a second processor could use the region between
0x2000 and 0x3FFF. Figure 1–6 on page 1–12 shows an example of this type of memory
sharing.

The Nios II SBT provides a simple scheme of memory partitioning that allows
multiple processors to run their software from different regions of the same physical
memory. The SBT uses the exception address for each processor to determine the
region of memory from which each processor can run its code. The system designer
sets the exception address for each processor independently in Qsys.

The Nios II SBT ensures that the processors' software is linked and determines where
the software resides in memory. It uses the exception addresses to calculate where
each code section is linked. The Nios II SBT positions each processor’s code region in
the memory component containing the exception address.

If the software for multiple processors is linked to the same physical memory
component, then the SBT uses the exception address of each processor to determine
the base address of the region. The code region ends at the next exception address for
a different processor found in that physical memory component. The processor with
the highest exception address is assigned a code region that extends to the end of the
physical memory component's address range.

Each processor has five default linker sections. Regardless whether the processor is in
a single-processor or a multiprocessor system, the default linker sections are as
follows:

■ .text—the executable code

■ .rodata—any read-only data used in the execution of the code

■ .rwdata—where read-write variables and pointers are stored

■ .heap—where dynamically allocated memory is located

■ .stack—where function-call parameters and other temporary data is stored

The SBT ensures that these sections are linked and located at fixed addresses in
memory.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–11
Software Design Considerations for Multiple Processors
See Figure 1–5 for a memory map showing how these sections are typically linked in
memory for a single processor Nios II system.

In a multiprocessor system, it might be advantageous to use a single memory to store
all the code sections for each processor. In this case, the exception address set for each
processor in Qsys is used to define the boundaries between where one processor's
code section ends and where the next processor's code section begins.

For instance, imagine a system where on-chip memory occupies the following
processor-specific address ranges:

■ 0x00050000 to 0x0005FFFF—cpu_top processor

■ 0x04000000 to 0x0405FFFF—Nios II processor in any philosopher subsystem

Processor cpu_top and the processors in each philosopher subsystem are each
allocated eight KB of on-chip memory to run their software. If you use Qsys to set
their exception addresses eight KB apart in on-chip memory, the Nios II SBT
automatically partitions on-chip memory based on those exception addresses. See
Figure 1–6 for a memory map showing how the on-chip memory is partitioned in this
example system. This figure depicts the memory map offsets to the base of on-chip
memory in the top level of the hierarchy. The on-chip memory is seen by processors in
each subsystem at a different address location than is seen by cpu_top in the top level
of the hierarchy. This address is obtained by adding the base address of the on-chip
memory, as defined in the top level, to the base address of out_system_bridge, the
Avalon-MM pipeline bridge, in the philosopher subsystem used to access components
in the top level.

Figure 1–5. Single Processor Code Linked in Memory Map

Memory

0x0001FFF

0x00000000

.stack

.heap

.rwdata

.rodata

.text
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–12 Chapter 1: Creating Multiprocessor Nios II Systems
Software Design Considerations for Multiple Processors
Figure 1–6. Partitioning of On-Chip Memory for Six Processors

On-Chip Memory Base Offsets

cpu_top

.text

.rodata

.rwdata

0x0000a020Exception Address

0x0000a000Code Entry Point

cpu_top:

.heap

.stack

philosopher_zero_cpu

.text

.rodata

.rwdata

0x00000020Exception Address

0x00000000Code Entry Point

philosopher_zero_cpu:

.heap

.stack

philosopher_four_cpu

.text

.rodata

.rwdata

0x00008020Exception Address

0x00008000Code Entry Point

philosopher_four_cpu:

.heap

.stack

philosopher_three_cpu

.text

.rodata

.rwdata

0x00006020Exception Address

0x00006000Code Entry Point

philosopher_three_cpu:

.heap

.stack

philosopher_two_cpu

.text

.rodata

.rwdata

0x00004020Exception Address

0x00004000Code Entry Point

philosopher_two_cpu:

.heap

.stack

philosopher_one_cpu

.text

.rodata

.rwdata

0x00002020Exception Address

0x00002000Code Entry Point

philosopher_one_cpu:

.heap

.stack
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–13
Software Design Considerations for Multiple Processors
The lower six bits of the exception address are always set to 0x20. Offset 0x0 is where
the Nios II processor must run its reset code, so the exception address must be placed
elsewhere. The offset 0x20 is used because it corresponds to one instruction cache line.
The 0x20 bytes of reset code initialize the instruction cache, and then branch around
the exception section to the system startup code for that processor.

1 Care must be taken when partitioning a physical memory to contain the code sections
of multiple processors. There are no safeguards in Qsys or the Nios II SBT that
guarantee you have provided enough code space for each processor's stack and heap
in the partition. If inadequate code space is allotted in memory, the stack and heap
might overflow and corrupt the processor's code execution.

Boot Addresses
In multiprocessor systems, each processor must boot from its own region of memory.
Multiple processors might not boot successfully from the same bit of executable code
at the same address in the same non-volatile memory. Boot memory can also be
partitioned, much like program memory can, but the notion of sections and linking is
not a concern because boot code typically just copies the real program code to where it
is linked in RAM, and then branches to the program code. To boot multiple processors
from separate regions with the same non-volatile memory device, simply set each
processor's reset address to the location from which you need to boot that processor.
Be sure you leave enough space between boot addresses to hold the intended boot
payload. See Figure 1–7 for a memory map of one physical flash device from which
three processors can boot.

The Nios II flash programmer can program bootable code for multiple processors into
a single flash device. The flash programmer looks at the reset address of each
processor and uses that reset address to calculate the offset in the flash memory where
the code is programmed.

f For details about the Nios II flash programmer, refer to the Nios II Flash Programmer
User Guide.

1 You must exercise caution when connecting multiple Nios II processors to a single CFI
flash memory device. Because no support mechanism exists in the CFI flash driver to
allow a processor to confirm that another processor is not currently accessing the flash
memory device, a read operation can return corrupted data. Specifically, if a processor
attempts to read from a CFI flash memory device currently not in read mode, the read
operation does not access the data on the flash correctly. If another processor issues a
query to the flash memory device immediately prior to the first processor's read
attempt, the flash memory device is in command mode while it processes the query,
and the read operation cannot read the data correctly. For this reason, Altera
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

1–14 Chapter 1: Creating Multiprocessor Nios II Systems
Software Design Considerations for Multiple Processors
recommends that you designate one Nios II processor as the flash master, and allow
only the flash master to read from or write to the flash memory device, in any system
that connects multiple Nios II processors to a single flash memory device. The
designated processor can read the application images from the flash memory device
for the other processors.

If you allow multiple Nios II processors to boot from the same CFI flash memory
device, to ensure safe access to the CFI flash memory, you must remove the CFI flash
memory driver initialization from the alt_main() function for all but one processor,
and that processor must confirm boot completion by all the other processors before
proceeding with the CFI flash memory driver initialization.

Figure 1–7. Flash Device Memory Map with Three Processors Booting

0x00000000

0x00FFFFF

1MB Flash Memory

Boot Loader

Program Data
Processor 1

Processor 2

Processor 3

0x0000FFFF

0x0001FFFF
0x00020000

0x00010000

Program Data

Boot Loader

Program Data

Boot Loader
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–15
Design Example: The Dining Philosophers’ Problem
f For information about complex boot procedures, refer to AN458: Alternative Nios II
Boot Methods.

Debugging Nios II Multiprocessor Designs
The Nios II SBT for Eclipse includes a number of features that can help in the
development of software for multiprocessor systems. Most notable is the ability of the
Nios II SBT for Eclipse to perform simultaneous debug for multiple processors.
Multiple debug sessions can run at the same time on a multiprocessor system and can
pause and resume each processor independently. Breakpoints can also be set
individually per processor. If one processor hits a breakpoint, it does not halt or affect
the operation of the other processors. Debug sessions can be launched and stopped
independently.

For more information about debugging multiprocessor systems, refer to “Debugging
the Software Projects on the Board” on page 1–36.

Design Example: The Dining Philosophers’ Problem
The following exercise shows you how to build a hierarchical six processor Nios II
system with Qsys, starting with the multiprocessor_tutorial_start design example as
a template. You launch scripts to create and execute six applications and six BSPs, one
project pair for each processor.

The Nios II multiprocessor design example demonstrates the use of multiple Nios II
processors in an Altera FPGA. Although this example is primarily aimed at
demonstrating a properly constructed hierarchical hardware system, it also contains
the software to exercise the interprocessor coordination capabilities of the system.

This example implements the classic Dining Philosophers’ Problem, illustrating
resource sharing and synchronization. Imagine five philosophers seated at a round
table. A single chopstick is positioned between each philosopher. Each philosopher
tries first to grab the chopstick to her left, and then the chopstick to her right. If both
chopsticks are acquired, the philosopher can eat. After a small delay, which represents
the eating time, the philosopher drops both chopsticks, making them available to her
neighboring philosophers. After another small delay, which represents thinking time,
the cycle repeats. To prevent deadlock, if any philosopher cannot grab the right
chopstick immediately after grabbing the left chopstick, she must drop the left
chopstick and try again later.

f For a description of the Dining Philosophers’ Problem, refer to the Dining philosophers
problem article at en.wikipedia.org. “Resource hierarchy solution” corresponds to the
solution presented in this tutorial.

Created with Qsys, the hierarchical hardware design dedicates five processors to
implement each of five dining philosophers, and five hardware mutexes to implement
each of five chopsticks. A sixth Nios II processor and one on-chip RAM reside in the
top level, along with a JTAG UART and timer. Each of the five subsystems shares the
top-level on-chip RAM, and contains a processor, JTAG UART, timer, and mutex.
Avalon-MM pipeline bridges enable communication between subsystem and
top-level components, and between processors and mutexes located in logically
adjacent subsystems connected in a ring.
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/an/an458.pdf
http://en.wikipedia.org/wiki/Main_Page

1–16 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example: The Dining Philosophers’ Problem
The dining_philosophers.c software runs on each of five subsystem processors,
implementing the thinking, eating, and chopsticks acquisition and release. The
top-level processor executes philosophers_monitor.c, accepting numeric commands
to acquire any mutex, preventing both logically adjacent “philosopher” processors
from eating until that “chopstick” mutex is released.

Figure 1–8 shows the topology of the complete multiprocessor system. The Qsys
interconnect, including all connections to individual components, is provided by
Qsys.

Hardware and Software Requirements
To use this design example you must have the following:

■ Quartus® II Software version 11.0 or higher

■ Cyclone® III FPGA development board, connected through a USB-Blaster™
connection to the host computer

f For information about the Cyclone III FPGA development board, refer to
the Altera Embedded Systems Development Kit, Cyclone III Edition page
on the Altera website.

Figure 1–8. Hierarchical Nios II Multiprocessor System Block Diagram—System Level

Qsys Interconnect

S

JT
AG

 U
AR

T

S

Ti
m

er

S

O
n-

C
hi

p
R

AM

S

Sy
st

em
 ID Nios II

Processor

M

Philosopher
Subsystem

S M

M

Philosopher
Subsystem

S M

M

Philosopher
Subsystem

S M

M

Philosopher
Subsystem

S M

M

Philosopher
Subsystem

S M

M

Philosopher Subsystem

S M

M
S

SM
Bridge Bridge

Br
id

ge

Nios II
Processor

M

Qsys Interconnect

S
JT

AG
 U

AR
T

S

Ti
m

er

S

M
ut

ex
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

http://www.altera.com/products/devkits/altera/kit-emb-dev-cyc3.html

Chapter 1: Creating Multiprocessor Nios II Systems 1–17
Design Example: The Dining Philosophers’ Problem
If you do not have a Altera Cyclone III 3C120 development board, you can follow the
hardware development steps, but you cannot download the complete system to a
working board. The design example does not use any hardware unique to the Altera
Cyclone III 3C120 development board. All peripherals used in the hardware design
are soft IP; therefore, the design can be ported to any Altera FPGA.

Installation Notes
You can download the Dining Philosophers’ Problem design example from the Nios II
Multiprocessor Design Example page on the Altera website.

f For installation notes specific to Altera software versions, refer to the readme.txt file
included in your tt_nios2_multiprocessor_design.zip installation.

Creating the Hardware System
In the following steps you create a multiprocessor system by starting with the
multiprocessor_tutorial_start hardware design example available with this tutorial in
tt_nios2_multiprocessor_design.zip, and add six subsystems, each containing a
Nios II processor, a timer, a clock, a JTAG UART, and a hardware mutex component.
Your final system should be identical to that in the multiprocessor_tutorial_final
hardware design available with this tutorial in tt_nios2_multiprocessor_design.zip,
for comparison purposes. If you do not have an Altera Cyclone III 3C120
development board, you can still follow these steps to learn how to design
multiprocessor hardware.

Getting Started with the multiprocessor_tutorial_start Design Example
To begin building a multiprocessor system sharing peripherals, perform the following
steps:

1. Unzip the tt_nios2_multiprocessor_design.zip file.

2. Copy the Multiprocessor_Tutorial_start folder to a working directory of your
choice. Make sure the path name has no spaces. The remainder of this tutorial
refers to your working directory as <working directory>.

3. Open the Quartus II software.

4. On the File menu, click Open Project (not Open).

5. Browse and load the Quartus II Project File (multiprocessor_tutorial.qpf) from
<working directory>.

6. On the Tools menu, click Qsys.

7. Select philosopher_zero.qsys. Click Open
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com/support/examples/nios2/exm-multi-nios2-hardware.html
http://www.altera.com/support/examples/nios2/exm-multi-nios2-hardware.html

1–18 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example: The Dining Philosophers’ Problem
Viewing a Philosopher System
First we'll examine one of the five Philosopher Systems to be added as subsystems to
the Qsys hierarchical system.

Each philosopher system is identical, except for a few of the Nios II processor
configuration settings.

Each system contains a processor, clock, mutex, timer, JTAG UART, and three pipeline
bridges. Table 1–1 illustrates the Nios II parameter settings differences.

Figure 1–9. philosopher_zero System
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–19
Design Example: The Dining Philosophers’ Problem
In Table 1–1, the Vector Memory and Vector Offset rows represent values entered in
the Nios II Core parameter editor in Qsys, when configuring each Nios II processor. In
a hierarchical system, if your processor defines exception and reset vectors in a
memory component external to the subsystem, you must set the memory component
to Absolute. Specify the absolute address in the Reset Vector Offset and Exception
Vector Offset fields instead of the memory component base offset.

Recall from “Program Memory” on page 1–9 that the exception addresses determine
how code memory is partitioned between processors. In this tutorial, each of the six
processors runs its software from eight KB of on-chip memory, so you set each
processor's exception address in on-chip memory, separated by 0x2000 (eight KB).

The first row contains the CPUID Control Register value, located under the
Advanced Features tab. The rest of the rows of parameters can be found in the Core
Nios II tab.

Philosopher System Pipeline Bridges
Each philosopher subsystem has three Avalon-MM pipeline bridges. They enable
each of the Nios II processors to access components in other levels of the hierarchy,
creating a peripheral memory map unique to each processor. The three bridges are
named out_system_bridge, in_philo_bridge, and out_philo_bridge.
out_system_bridge and out_philo_bridge each provide an address range window for
accessing components in an external system. The address range for the bridge spans
from the bridge base to a bridge base offset derived from the address width in bits
specified with an addressable unit size of symbols (a.k.a. bytes).

Table 1–1. Nios II Parameter Settings

Parameter Values

Processor Name cpu_top cpu_zero cpu_one cpu_two cpu_three cpu_four

cpuid Control Register 5 0 1 2 3 4

Processor instance 0 1 2 3 4 5

JTAG UART instance 0 1 2 3 4 5

Reset Vector Memory onchip_memory.s1 Absolute Absolute Absolute Absolute Absolute

Reset Vector Offset
and Value

0x0000A000

0x0005A000

0x04050000

0x04050000

0x04052000

0x04052000

0x04054000

0x04054000

0x04056000

0x04056000

0x04058000

0x04058000

Exception Vector
Memory

onchip_memory.s1 Absolute Absolute Absolute Absolute Absolute

Exception Vector
Offset and Value

0x0000A020

0x0005A020

0x04050020

0x04050020

0x04052020

0x04052020

0x04054020

0x04054020

0x04056020

0x04056020

0x04058020

0x04058020
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–20 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example: The Dining Philosophers’ Problem
out_system_bridge provides the processor with access to top-level components,
specifically on-chip memory. At the top level, on-chip memory has a base address of
0x50000. out_system_bridge has a base address of 0x04000000. The base of the bridge
is added to the top-level component base address to find the starting location in the
memory map where on-chip memory appears for a processor in a philosopher
subsystem, at 0x04050000. An address width of 26 creates a memory window
provided by out_system_bridge spanning 0x03FFFFFF bytes, ranging from
0x04000000 to 0x07FFFFFF.

out_philo_bridge provides access for mutex peripherals located in adjacent
subsystems. out_philo_bridge has a base of 0x80000. out_philo_bridge exports a
master, which gets connected to a neighboring philosopher subsystem at the top level.
To derive the address of the mutex in the neighboring subsystem, first take the base
address of out_philo_bridge of 0x80000. Add to that the base address of a
neighboring philosopher subsystem, for example philosopher_two, with a base
address of 0x020000. Finally, add the base address of the mutex itself at 0x8800, to get
the address of 0x000A8800 for accessing philosopher_two's mutex from
philosopher_one. An address width of 19 bits enables an address window spanning
0x7FFFF bytes, ranging from 0x00080000 to 0x000FFFFF.

in_philo_bridge is needed to provide an exported slave interface for the connection
of remote processors to the local chopstick mutex. The in_philo_bridge master can
then be connected to the local chopstick mutex at the same time that local philosopher
processor master connects to the local chopstick mutex, providing simultaneous local
and remote processor access to the chopstick mutex. This configuration is necessary
because the chopstick mutex cannot simultaneously export its slave interface directly
while connecting its slave interface locally. An address width of 16 bits enables an
address window spanning 0xFFFF bytes.

In this multiprocessor tutorial's hierarchical design, each “philosopher” processor is
connected to only two of the five total mutexes available in the design. The two mutex
connections represent one chopstick on the left and one chopstick on the right.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–21
Design Example: The Dining Philosophers’ Problem
One of the two connections, representing the left chopstick, is made directly in the
Qsys connection panel from the processor's data master to the mutex slave local to the
same subsystem as the processor. The other connection, representing the right
chopstick, connecting the processor's data master to the slave port of a mutex located
in a remote subsystem, is made in the following three stages:

1. The processor data master is connected in the Qsys connection panel to a pipeline
bridge, named out_philo_bridge. out_philo_bridge exports its Avalon-MM
master interface, named outgoing_philo_master. This connection is already made
in the philosopher subsystem.

2. In the remote subsystem containing the mutex, the mutex slave interface is
connected in the Qsys connection panel to another pipeline bridge, named
in_philo_bridge. This connection is already made in the philosopher subsystem.

in_philo_bridge exports its Avalon-MM slave interface, named
incoming_philo_slave. Any exported interface cannot also be directly connected
to components local to the subsystem. The mutex must connect to both a local
processor master and a remote processor master. Therefore, instead of the mutex
exporting its slave interface directly, the mutex slave interface is connected to both
the local processor master and the local pipeline bridge master through the Qsys
connection panel. Any remote processor's master can then be connected to the
mutex slave indirectly through this pipeline bridge.

3. To provide the indirect connection between the local processor's data master to the
slave port of the remote mutex, connect the two bridges at the top level of the
hierarchy. In the Qsys connection panel of the top-level design, connect the
outgoing_philo_master interface of the philosopher subsystem containing the
processor to the incoming_philo_slave exported interface of the philosopher
subsystem containing the mutex.

Adding Philosopher Subsystems
In the next series of steps, you add five Philosopher Subsystems to the Qsys
hierarchical system. Open the top-level design in Qsys, by performing the following
steps:

1. On the Qsys File menu, click Open.

2. Select multiprocessor_tutorial_main_system.qsys and click Open.

3. To add philosopher zero, perform the following steps:

a. In the Component Library on the left side of the System Contents tab, under
Project, expand System, and select philosopher_zero.

b. Click Add. The philosopher_zero parameter editor appears. Click Finish.

c. Right-click the added component name, zero_0, and click Rename.

d. Type philosopher_zero r.

4. Add philosophers one through four, in that order, by repeating steps a through d.
In place of zero, substitute one, two, three and four, in turn.

5. For each philosopher subsystem, in the Export column, click the automatically
exported names (clk for the clock input, and reset for the reset input), and press
backspace to delete the exported names.
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–22 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example: The Dining Philosophers’ Problem
Connecting the Philosopher Subsystems
Using the Qsys connection matrix, make the following port connections.

1 Some of the connections to cpu_top already exist in the multiprocessor_tutorial_start
hardware design, but are listed again in this section for completeness.

1. Connect the clock input for all five philosopher subsystem's clock input as shown
in Table 1–2.

Table 1–2. Connecting Philosopher Clock Inputs

Connect From

cl
k.

cl
k

Connect To

v philosopher_zero.philosopher_clk_in

v philosopher_one.philosopher_clk_in

v philosopher_two.philosopher_clk_in

v philosopher_three.philosopher_clk_in

v philosopher_four.philosopher_clk_in
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–23
Design Example: The Dining Philosophers’ Problem
2. Connect the reset inputs for all processors and clk to each of the clk component's
reset output, and the cpu_jtag_debug_module_reset reset output of every
processor (cpu_top and each philosopher subsystem), for a total of 42 reset
connections, as shown in Table 1–3.

Table 1–3. Connecting Philosopher Reset Inputs

Connect From

cl
k.

cl
k_

re
se

t

cp
u_

to
p.

jta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_z

er
o.

cp
u_

jta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_o

ne
.c

pu
_j

ta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_t

w
o.

cp
u_

jta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_t

hr
ee

.c
pu

_j
ta

g_
de

bu
g_

m
od

ul
e_

re
se

t

ph
ilo

so
ph

er
_f

ou
r.c

pu
_j

ta
g_

de
bu

g_
m

od
ul

e_
re

se
t

Connect To

v v v v v v v philosopher_zero.philosopher_clk_reset_in

v v v v v v v philosopher_one.philosopher_clk_reset_in

v v v v v v v philosopher_two.philosopher_clk_reset_in

v v v v v v v philosopher_three.philosopher_clk_reset_in

v v v v v v v philosopher_four.philosopher_clk_reset_in

v v v v v v v philosopher_five.philosopher_clk_reset_in
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–24 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example: The Dining Philosophers’ Problem
3. Connect the reset inputs for the system ID peripheral and on-chip memory to the
reset output of each processor, as shown in Table 1–4.

In the next two steps, you connect the two Avalon-MM masters in each philosopher
subsystem to the components in other subsystems and components at the top level
that each philosopher processor accesses.

Table 1–4. Connecting Peripheral Reset Inputs

Connect From

cp
u_

to
p.

jta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_z

er
o.

cp
u_

jta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_o

ne
.c

pu
_j

ta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_t

w
o.

cp
u_

jta
g_

de
bu

g_
m

od
ul

e_
re

se
t

ph
ilo

so
ph

er
_t

hr
ee

.c
pu

_j
ta

g_
de

bu
g_

m
od

ul
e_

re
se

t

ph
ilo

so
ph

er
_f

ou
r.c

pu
_j

ta
g_

de
bu

g_
m

od
ul

e_
re

se
t

Connect To

v v v v v v onchip_memory.reset1

v v v v v v sysid_qsys.reset
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–25
Design Example: The Dining Philosophers’ Problem
4. Connect the Avalon-MM master exported pipeline bridge connection, named
outgoing_master, for each philosopher subsystem, to the two components in the
top level that every philosopher processor accesses, which are the system ID
peripheral and on-chip memory, as shown in Table 1–5.

Table 1–5. Connecting Philosopher Masters to Peripherals

Connect From

cp
u_

to
p.

da
ta

_m
as

te
r

ph
ilo

so
ph

er
_z

er
o.

cp
u_

ou
tg

oi
ng

_m
as

te
r

ph
ilo

so
ph

er
_o

ne
.c

pu
_o

ut
go

in
g_

m
as

te
r

ph
ilo

so
ph

er
_t

w
o.

cp
u_

ou
tg

oi
ng

_m
as

te
r

ph
ilo

so
ph

er
_t

hr
ee

.c
pu

_o
ut

go
in

g_
m

as
te

r

ph
ilo

so
ph

er
_f

ou
r.c

pu
_o

ut
go

in
g_

m
as

te
r

Connect To

v v v v v v onchip_memory.control_slave

v v v v v v sysid_qsys.s1
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–26 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example: The Dining Philosophers’ Problem
5. Connect the Avalon-MM master exported pipeline bridge connection, named
outgoing_philo_master, for each philosopher subsystem, to the Avalon-MM slave
exported pipeline bridge connection, named incoming_philo_slave, in a logically
adjacent philosopher subsystem, granting access to the chopstick mutex in that
neighboring philosopher subsystem, as shown in Table 1–6.

6. Finally, connect the cpu_top Nios II processor's Avalon-MM master, named
data_master, to each philosopher subsystem's incoming_philo_slave Avalon-MM
slave, as shown in Table 1–7.

Table 1–6. Connecting Philosopher Masters and Slaves

Connect From
ph

ilo
so

ph
er

_z
er

o.
ou

tg
oi

ng
_p

hi
lo

_m
as

te
r

ph
ilo

so
ph

er
_o

ne
.o

ut
go

in
g_

ph
ilo

_m
as

te
r

ph
ilo

so
ph

er
_t

w
o.

ou
tg

oi
ng

_p
hi

lo
_m

as
te

r

ph
ilo

so
ph

er
_t

hr
ee

.o
ut

go
in

g_
ph

ilo
_m

as
te

r

ph
ilo

so
ph

er
_f

ou
r.o

ut
go

in
g_

ph
ilo

_m
as

te
r

Connect To

v philosopher_zero.incoming_philo_slave

v philosopher_one.incoming_philo_slave

v philosopher_two.incoming_philo_slave

v philosopher_three.incoming_philo_slave

v philosopher_four.incoming_philo_slave

Table 1–7. Connecting cpu_top Master to Philosopher Slaves

Connect From

cp
u_

to
p.

da
ta

_m
as

te
r

Connect To

v philosopher_zero.incoming_philo_slave

v philosopher_one.incoming_philo_slave

v philosopher_two.incoming_philo_slave

v philosopher_three.incoming_philo_slave

v philosopher_four.incoming_philo_slave
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–27
Design Example: The Dining Philosophers’ Problem
7. After all the connections are specified, assign the base addresses for each
philosopher subsystem. In the Base column, double-click and type each address
shown in Table 1–8.

Viewing the Complete System
Figure 1–10 shows the system in Qsys after you complete the changes in the previous
section. It shows the new connected philosopher subsystem components and the
required connectivity for the system.

Table 1–8. Philosopher Subsystem Base Addresses

Processor Name Base Address

philosopher_zero 0x00000000

philosopher_one 0x00010000

philosopher_two 0x00020000

philosopher_three 0x00030000

philosopher_four 0x00040000

Figure 1–10. Shared Peripheral Connections
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–28 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example: The Dining Philosophers’ Problem
The multiprocessor_tutorial_final design example is also available in the
tt_nios2_multiprocessor_design.zip file. You can compare your completed system to
the predefined system located in the multiprocessor_tutorial_final subdirectory of
the extracted directory.

Generating and Compiling the System
In this section, you generate HDL for the system you just constructed in Qsys, and
then compile the project in the Quartus II software to produce a programming file.

To generate and compile the system, perform the following steps:

1. Click the Generation tab.

2. Turn off Simulation. Set Create simulator model to None. Set Create testbench
Qsys system to None. System generation executes much faster when simulation is
off.

3. Click Generate. This might take a few moments. A Stop button replaces the
Generate button, indicating generation is taking place.

4. When generation is complete, a GENERATE COMPLETED message appears.
Click Close.

5. Exit Qsys to return to the Quartus II software.

6. On the Quartus II Processing menu, click Start Compilation to compile the project
in the Quartus II software.

7. When compilation completes and displays the Full compilation was successful
message, click OK.

Generating Hierarchical Systems in Qsys

Generate only the top-level system in the Qsys hierarchy. In this tutorial, the top-level
system is in multiprocessor_tutorial_main_system.qsys. Generating the top-level
Qsys system automatically generates any subsystems in the top-level system.

1 If you create a .sopcinfo file for a subsystem, and attempt to build a BSP based on
that .sopcinfo file, when the BSP or application tries to refer to components in the top
level, those references fail. Instead, you must base the BSP on the .sopcinfo file for the
top-level Qsys system.

For example, for the Multiprocessor Tutorial, if you create philosopher_zero.sopcinfo
by generating philosopher_zero.qsys directly, and create a BSP based on
philosopher_zero.sopcinfo, BSP creation fails. The failure results in a severe error
indicating that absolute address 0x04050000 does not reference a device in the master
group cpu_zero. The absolute address 0x04050000 is intended to reference a location
in the address span of the on-chip memory declared in the top level of the
Multiprocessor Tutorial hardware design. Therefore BSP creation fails because
on-chip memory is located in the top level, outside of the philosopher_zero.qsys
subsystem.

Instead, you must generate a multiprocessor_tutorial_main_system.sopcinfo from
the top-level system, and base the BSP on this .sopcinfo file.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–29
Creating Software for the Multiprocessor System
Creating Software for the Multiprocessor System
In the following steps you build one application and one BSP project for each
processor in the system using the Nios II SBT through scripts, creating a total of
twelve separate software projects for the multiprocessor system. You also download
the contents of .elf files to each processor, and launch nios2-terminal sessions for each
JTAG UART through these scripts. You then import and debug the software projects
using the Nios II SBT for Eclipse.

1 If you encounter any difficulties executing the software on your new hardware
design, Altera recommends that you try running the software on the
multiprocessor_tutorial_final hardware design to validate your execution of these
procedures. After you are successful running software on the
multiprocessor_tutorial_final hardware design, compare the Qsys system of your new
hardware design with the multiprocessor_tutorial_final hardware design’s Qsys
system, and look for any differences that might be responsible for incorrect behavior
of your new hardware design.

Building and Running the Applications from the Command Line
In this section, you build and launch the philosopher and philosophers_monitor
applications, view their output in nios2-terminal, and interact with them.

Building and Launching the Applications
To build the applications for this tutorial, perform the following steps:

1. Start six Nios II Command Shells.

2. Change directories to <working directory> in each shell.

3. Change directories to software.

4. Download the multiprocessor_tutorial.sof file that you just built, by typing the
following command in one shell:

./multiprocessor_tutorial_hw.sh r

1 If you are using more than one USB-Blaster cable, specify the numeric cable
number as the last parameter to each of these scripts. You can see a
description of command usage by typing philosopher.shr with no
arguments.

5. Build, download, and start the project to be run on the cpu_top processor by
typing the following command in the same shell you used in the previous step:

./philosophers_monitor.sh r
6. Build, download, and start the project to be run on the cpu_zero processor by

typing the following command in another shell:

./philosopher.sh 0 r
7. Build, download, and start the projects to be run on the cpu_one, cpu_two,

cpu_three, and cpu_four processors by repeating step 6 with command-line
arguments 1, 2, 3, and 4.
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–30 Chapter 1: Creating Multiprocessor Nios II Systems
Creating Software for the Multiprocessor System
These scripts build and download each application to its respective target.
Application software projects and BSP projects are created and built.

If you make hardware design changes in Qsys, you can easily regenerate the
application and BSP projects to reflect those changes by rerunning these scripts. The
scripts rebuild the projects each time they are executed.

The scripts also start nios2-terminal for viewing output from each application. In
each of the shells, observe the five philosophers eating, thinking, and waiting for
chopsticks to become available.

1 The Quartus II software automatically assigns instance numbers for components. You
cannot directly control how the instance numbers are assigned. However, they are
assigned systematically, and a subsequent Quartus II compile of any particular
hardware design is guaranteed to produce the same instance numbers as previous
compiles of the identical hardware design, for both JTAG UARTs and Nios II
processors. So, after a Quartus II compile, you just need to try the different instance
numbers. One way to tell which particular Nios II processor is executing the software
following a download to a particular Nios II processor instance is to print
ALT_CPU_CPU_ID_VALUE, after specifying unique values in Qsys for each Nios II
processor. However, that number is not the same as an instance number.

nios2-download allows you to specify the target processor by name, instead of by
instance number. To specify the processor by name, use the --cpu-name switch. Drop
the subsystem portion of the derived hierarchical processor name, and only specify
the local name of a processor in a subsystem.

For example, to target philosopher_one_cpu_one, use --cpu-name=cpu_one.

nios2-download also accepts a switch, --jdi, for specifying the jdi file for the
hardware design. Use of the --jdi switch is required with --cpu-name. For the
multiprocessor_tutorial_start design example, specify
<working directory>/multiprocessor_tutorial.jdi.

JTAG UART instance numbers are also automatically assigned independently from
the Nios II processors by the Quartus II software, and do not necessarily match the
instance number of the Nios II processor to which the JTAG UART is connected. You
must specify the JTAG UART by its instance number, using the --instance switch on
the command line. Use jtagconfig -n to display all the instances of Nios II
processors and JTAG UARTs available in your hardware design. To check which JTAG
UART instance matches which Nios II processor in your Qsys hardware design,
perform the following steps:

1. Open nios2-terminal sessions in separate windows for all JTAG UART instances.

2. Download code to one of the Nios II processors

3. Make a note of the nios2-terminal that receives the output, with its JTAG UART
instance number.

4. Download code to each Nios II processor in turn, until you have a list of
nios2-terminal windows connected and processor names.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–31
Creating Software for the Multiprocessor System
The CPU ID number printed by an application is generally different from the
processor instance. You configure the CPU ID in Qsys for each philosopher
subsystem's processor. In contrast, the processor instance is assigned independently
and automatically by the Quartus II software at compilation time.
PHILOSOPHER_DOWNLOAD_CPU_NAME and JTAG_UART_INSTANCE_NUMBER are variables set
and used by these scripts to specify both the processor name and the JTAG UART
instances. In philosophers_monitor.sh, JTAG_UART_INSTANCE_NUMBER is set to 0, and
PHILOSOPHER_DOWNLOAD_CPU_NAME is set to cpu_top. In philosopher.sh, these two
variable values are derived from the first parameter philosopher number that you
type on the command line. If you customize the Qsys hardware design provided with
this tutorial, modify the assignment for the JTAG_UART_INSTANCE_NUMBER variable in
the scripts if you find that the JTAG UART instance numbers no longer correspond to
the processor names in Table 1–1 on page 1–19.

Viewing and Controlling Applications from the Command Line
Philosophers are seated counterclockwise, so philosopher 4 sits to the right of
philosopher 3, and philosopher 0 sits to the right of philosopher 4. Philosopher 4
grabs the chopstick in his own subsystem, representing the left chopstick. Philosopher
4 grabs the chopstick in his neighboring philosopher 0's subsystem, representing the
right chopstick from the point of view of philosopher 4.

With all six applications running, your nios2-terminal sessions look similar to
Figure 1–11.

Figure 1–11. Monitor and Five Philosopher Applications Running
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–32 Chapter 1: Creating Multiprocessor Nios II Systems
Creating Software for the Multiprocessor System
In the following steps, you interact with the philosophers_monitor application. You
demonstrate peripheral contention by grabbing chopsticks from each philosopher
subsystem, and observing the results.

1. Grab chopstick 1 by pressing 1 in the philosophers_monitor shell, as shown in
Figure 1–12.

Philosopher 4 continues to eat and think, as shown in Figure 1–13.

2. Grab chopstick 0 by pressing 0 in the philosophers_monitor shell. Philosopher 4
cannot pick up the right chopstick, as shown in Figure 1–14.

Figure 1–12. philosophers_monitor Running in nios2-terminal

Figure 1–13. Philosopher 4 Eating and Thinking

Figure 1–14. Philosopher 4 with Chopstick 0 Grabbed
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–33
Creating Software for the Multiprocessor System
3. Grab chopstick 4 by pressing 4 in the philosophers_monitor shell. Philosopher 4
cannot pick up the left chopstick, as shown in Figure 1–15.

4. Drop both chopsticks 0 and 4 by pressing 0 and 4 in the philosophers_monitor
shell. Philosopher 4 can eat again, as shown in Figure 1–16.

Debugging the Applications in the Nios II SBT for Eclipse
In this section, you set up a debugging environment in the Nios II SBT for Eclipse, and
begin debugging the applications.

Starting the Nios II SBT for Eclipse
In this section, you start the Nios II SBT for Eclipse and begin importing software
projects for the two Nios II processors in the system. In the Windows operating
system, start the Nios II SBT for Eclipse from Qsys by performing the following steps:

1. On the Tools menu in the Quartus II software, click Qsys.

2. In Qsys, click Cancel when prompted to open a Qsys system.

3. On the Tools menu, click Nios II Software Build Tools for Eclipse. The
Nios II SBT for Eclipse starts.

1 If the Workspace Launcher dialog box appears, click OK to accept the
default workspace. If the Nios II SBT for Eclipse welcome screen appears,
click Workbench to continue.

Figure 1–15. Philosopher 4 with Chopstick 4 Grabbed

Figure 1–16. Philosopher 4 with No Chopsticks Grabbed
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–34 Chapter 1: Creating Multiprocessor Nios II Systems
Creating Software for the Multiprocessor System
Importing the Software Projects
In this section, you import the following four projects to the Nios II SBT for Eclipse:

■ app_monitor

■ bsp_monitor

■ app4

■ bsp4

To import the software projects, perform the following steps:

1. In the Nios II SBT for Eclipse, on the File menu, click Import.

2. Expand Nios II Software Build Tools Project. The Import Nios II Software Build
Tools Project option appears.

3. Highlight Import Nios II Software Build Tools Project, and click Next. The
Import Software Build Tools Project window opens.

4. For Project location, browse to one of the four projects that you built by running
the philosophers_monitor and philosopher scripts. For example, browse to
software, highlight the app4 folder, and click OK.

5. For Project name, enter your project name, for example app4, and click Finish.

1 If a dialog box appears with the message Do you want the Nios II Software
Build Tools for Eclipse to manage your makefile for you?, click Yes.

6. Repeat steps 1 to 5 to import the remaining three projects: bsp4, app_monitor, and
bsp_monitor.

Building the Software Projects
In this section, you build the software projects you just imported so they can be run on
the processors in the system.

To build the software projects, perform the following steps:

1. In the Nios II perspective, right-click the project app4 and click Build Project.

2. Right-click the project app_monitor and click Build Project.

Launching nios2-terminal for stdio Connections
In this section, you launch two nios2-terminal sessions to connect to the stdout and
stdin devices on each processor outside of Nios II SBT for Eclipse. These
nios2-terminal sessions receive output from and send input to application projects
launched in multiple Nios II SBT for Eclipse debug sessions.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–35
Creating Software for the Multiprocessor System
Launch nios2-terminal in two different Nios II command shells, one for each debug
configuration, specifying the JTAG UART instances with the --instance switch. For
this Multiprocessor Tutorial hardware design, each processor uses (philosopher
number + 1) as the assigned instance IDs for both processors and JTAG UARTs. For
example, project app4 running on cpu_four uses JTAG UART instance 5, the same
instance ID as cpu_four. Project AppMonitor, running on cpu_top, uses JTAG UART
instance 0, the same instance ID as cpu_top.

nios2-terminal --instance=5 r
nios2-terminal --instance=0 r

Creating and Running a Launch Configuration for Each Processor
In this section, you create a launch configuration for each of the target processors and
start debugging with those configurations. These configurations enable you to run
and debug the multiple software projects you just built for the processors in the
system.

To create a debug configuration for one of the processors, perform the following steps:

1. In the Nios II perspective, click the app4 project.

2. On the Run menu, click Debug Configurations.

3. In the configurations list, right-click Nios II Hardware.

4. Click New. A new debug configuration is created for the project.

5. In the Name field, type App4.

6. Open the Project tab.

7. For Project Name, select app4.

8. Open the Target Connection tab.

9. Ensure that the Name column under Processors is populated. If no processor
names appear, perform the following steps:

a. Click Refresh Connections.

b. Select one of the processor rows, then click Resolve Names.

c. If the Name column remains unpopulated, perform the following additional
steps:

■ In the Project tab, click Advanced. The Nios II ELF Section Properties
dialog box appears.

■ Under Other, turn off Use default JDI File extracted from ELF file and set
JTAG Debugging Information File name to
<working directory>/multiprocessor_tutorial.jdi.

■ Click Close.

1 The processor name listed in Nios II ELF Section Properties shows the full
hierarchical name. The SBT does not use the full hierarchical processor
names.

10. Under Processors, ensure that the row with Name value cpu_four is selected.
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–36 Chapter 1: Creating Multiprocessor Nios II Systems
Creating Software for the Multiprocessor System
11. If you made changes to the debug configuration, the Apply button is enabled.
Click Apply.

1 Because the Nios II SBT does not use the full hierarchical processor names,
you specify cpu_four, not philosopher_four_cpu_four, when creating the
debug configuration for project app4. When selecting processor instances,
you can ignore the following message at the top of the Debug
Configuration window:

The expected CPU name does not match the selected target CPU name.

12. Under Byte Stream Devices, turn on Disable ‘Nios II Console’ view. This setting
lets you use nios2-terminal to connect to the stdout and stdin device on each
processor outside of Nios II SBT for Eclipse.

13. Click Debug. The Nios II SBT for Eclipse downloads and launches the app_four
software project on the cpu_four processor, then pauses cpu_four at a breakpoint
set on main().

14. If the Debug Configurations dialog box does not close automatically, click Close
to return to the Nios II perspective.

15. If you are prompted to enter the Nios II Debug perspective, click Yes.

16. If you are not already in the Nios II Debug perspective, click the Debug
perspective icon in the top right corner of your Nios II SBT for Eclipse window.

17. Check that the App4 debug session, including the call stack, appears in the Nios II
Debug perspective.

18. To return to the Nios II perspective, click the Nios II perspective icon in the top
right corner of your Nios II SBT for Eclipse window. If the Nios II perspective icon
is not visible, click the yellow plus-sign Open Perspective button.

19. Repeat steps 1 through 17 to create and run a debug configuration to execute the
app_monitor project on the cpu_top target processor, substituting app_monitor
for app4 and cpu_top for cpu_four.

You have created, downloaded, and started a debug configuration for each processor
in the system. At this point, you can resume the code execution and debug code on
each of the processors individually, using the normal flow for running or debugging.

Each processor begins executing code immediately after its code is downloaded to the
FPGA; the processors do not start in unison. Although each processor begins running
the code as soon as it is downloaded, the debug configuration ensures that each
processor stops at a breakpoint set on main().

1 For many multiprocessor designs, the Launch Group feature can save steps by
downloading all .elf files to all processors at once. However, the Nios II SBT for
Eclipse does not support Nios II console connections to multiple JTAG UARTs with
the Launch Group feature.

Debugging the Software Projects on the Board
After you download both debug configurations to the Altera Cyclone III 3C120
development board, you must resume code execution on each processor.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

Chapter 1: Creating Multiprocessor Nios II Systems 1–37
Creating Software for the Multiprocessor System
To run the design example on the Altera Cyclone III 3C120 development board, after
the two debug configurations are invoked, perform the following steps:

1. Ensure that both software projects are paused at the beginning of main().

2. To continue the app_monitor debug run past the initial breakpoint, perform the
following steps:

a. To use the debugger to step through code, click the main() call stack entry
under the app_monitor debug session.

b. Click the Step Over icon in the toolbar menu to see app_monitor step through
the software code.

c. To let app_monitor run freely, click the green arrow Resume icon in the toolbar
menu. Output and input for debug session app_monitor are exchanged in the
nios2-terminal session with instance 0, connected to the cpu_top Nios II
processor.

Figure 1–17 shows multiple threads running in the Nios II SBT for Eclipse.

Figure 1–17. Multiple Processors in the Nios II SBT for Eclipse
June 2011 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

1–38 Chapter 1: Creating Multiprocessor Nios II Systems
Conclusion
3. To continue debugging the app4 project past the initial breakpoint, perform the
following steps:

a. Click the main() call stack entry under the App4 debug session.

b. Click the green arrow Resume icon in the toolbar menu. The software running
in the App4 launch configuration on the cpu_four processor sends messages to
stdout describing the eating and thinking activity for philosopher 4. This
output appears on the nios2-terminal session with instance 5, connected to the
cpu_four processor.

4. In the first nios2-terminal session (monitoring cpu_top), grab and drop the 0 and
4 chopsticks. Observe the cpu_four eating and thinking. After each chopstick grab,
watch the behavior in the second nios2-terminal session (monitoring cpu_four).
After grabbing chopstick 0, philosopher 4 could not pick up the right chopstick.
After grabbing chopstick 4, philosopher 4 could not pick up the left chopstick.

Conclusion
In this tutorial, you constructed, built software projects for, and debugged software on
a Nios II multiprocessor system. You have also learned how to use the Altera mutex
core to synchronize system peripheral control among multiple processors. Feel free to
experiment with the system you have created and find interesting new ways of using
multiple processors in an Altera FPGA.

Altera recommends saving this system to use as a starting point next time you need to
create a multiprocessor system.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

June 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Date Version Changes

June 2011 2.0
■ Updated for Qsys

■ Added new example design based on the Dining Philosophers’ problem

February 2010 1.4 Updated for Nios II Software Build Tools for Eclipse.

December 2007 1.3 Updated for Quartus II 7.2 release: minor text changes.

May 2007 1.2 Updated for Quartus II 7.1 release.

May 2006 1.1 Updated for Quartus II 6.0 release.

April 2005 1.0 Initial release.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
Creating Multiprocessor Nios II Systems Tutorial June 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Creating Multiprocessor Nios II Systems Tutorial
	Contents
	1. Creating Multiprocessor Nios II Systems
	Introduction to Nios II Multiprocessor Systems
	Benefits of Hierarchical Multiprocessor Systems
	Nios II Multiprocessor Systems
	Multiprocessor Tutorial Prerequisites
	Hardware Designs for Peripheral Sharing
	Autonomous Multiprocessors
	Multiprocessors that Share Peripherals

	Sharing Peripherals in a Multiprocessor System
	Sharing Memory
	The Hardware Mutex Core
	Sharing Peripherals
	Overlapping Address Space

	Software Design Considerations for Multiple Processors
	Program Memory
	Boot Addresses
	Debugging Nios II Multiprocessor Designs

	Design Example: The Dining Philosophers’ Problem
	Hardware and Software Requirements
	Installation Notes
	Creating the Hardware System
	Getting Started with the multiprocessor_tutorial_start Design Example
	Viewing a Philosopher System
	Philosopher System Pipeline Bridges
	Adding Philosopher Subsystems
	Connecting the Philosopher Subsystems
	Viewing the Complete System
	Generating and Compiling the System

	Creating Software for the Multiprocessor System
	Building and Running the Applications from the Command Line
	Building and Launching the Applications
	Viewing and Controlling Applications from the Command Line

	Debugging the Applications in the Nios II SBT for Eclipse
	Starting the Nios II SBT for Eclipse
	Importing the Software Projects
	Building the Software Projects
	Launching nios2-terminal for stdio Connections
	Creating and Running a Launch Configuration for Each Processor
	Debugging the Software Projects on the Board

	Conclusion

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

