
Nios II Floating Point Hardware 2 Component User
Guide

2016.05.03

ug-1175 Subscribe Send Feedback

Introduction
The Floating Point Hardware (FPH1)(1) provides substantial performance improvement over floating-
point software emulation by providing custom instruction implementations of single-precision add, sub,
multiply, and divide operations. Software implements all other floating-point operations (including
double-precision operations) by emulating FPH1 functionality.

The Floating Point Hardware 2 (FPH2)(2) achieves even higher levels of performance by providing lower
cycle count implementations of add, sub, multiply, and divide operations, and by providing custom
instruction implementations of additional floating-point operations.

You must be familiar with the following items to fully understand this document:

• FPH1
• Nios® II Gen2 (or Classic) Processor Reference Handbook
• Nios II Gen2 (or Classic) Software Developer's Handbook
• Nios II Custom Instruction User Guide
• Using Nios II Floating-Point Custom Instructions Tutorial

Related Information

• Nios II Classic Processor Reference Handbook
• Nios II Gen2 Processor Reference Handbook
• Nios II Classic Software Developer's Handbook
• Using Nios II Floating-Point Custom Instructions Tutorial
• GCC Floating-point Custom Instruction Support Overview
• GCC Single-precision Floating-point Custom Instruction Command Line
• Nios II Gen2 Software Developer's Handbook
• Nios II Custom Instruction User Guide

Overview
The following figure shows the structure of the FPH2 component, with the display name Floating Point
Hardware 2 and the IP name altera_nios_custom_instr_floating_point_2. Floating Point Hardware 2

(1) First generation.
(2) Second generation.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=ug-1175
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(ug-1175%202016.05.03)%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
https://www.altera.com/en_US/pdfs/literature/tt/tt_floating_point_custom_instructions.pdf
http://www.alterawiki.com/wiki/Custom_Instructions
http://www.alterawiki.com/wiki/Single-precision_-mcustom-*_options
https://documentation.altera.com/#/link/lro1419794938488/mwh1416946568604/en-us
https://www.altera.com/en_US/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

packages all the floating point functions in a single Qsys component, consisting of the following
subcomponents:

• altera_nios_custom_instr_floating_point_2_combi
• altera_nios_custom_instr_floating_point_2_multi

Figure 1: Custom Instruction Implementation

This figure lists the floating-operations implemented by each custom instruction.

• minimum
• maximum
• compare
• negate
• absolute

• add
• subtract
• multiply
• divide
• square root
• convert

Combinatorial Custom Instruction
(altera_nios_custom_instr_floating_point_2_combi)

Multi-Cycle Custom Instruction
(altera_nios_custom_instr_floating_point_2_multi)

Floating Point Hardware 2 Component
(altera_nios_custom_instr_floating_point_2)

The characteristics of the FPH2 are:

• Supports FPH1 operations (add, sub, multiply, divide) and adds support for square root, comparisons,
integer conversions, minimum, maximum, negate, and absolute

• Single-precision floating-point values are stored in the Nios II general purpose registers
• VHDL only
• Qsys support only
• Single-precision only
• Optimized for FPGAs with 4-input LEs and 18-bit multipliers
• GCC and Nios II SBT (Software Build Tools) software support
• IEEE 754-2008 compliant except for:

• Simplified rounding
• Simplified NaN handling
• No exceptions
• No status flags
• Subnormal supported on a subset of operations

• Binary-compatibility with FPH1

• FPH1 implements Round-To-Nearest rounding. Because FPH2 implements different rounding,
results might be subtly different between the two generations

FPH2 Resource Usage
When added to a typical system, the FPH2 consumes the following resources:

2 FPH2 Resource Usage
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Approximately 2500 4-input LEs
• Nine 9-bit multipliers
• Three M9K memories or larger

Floating Point Hardware 2 Benchmarking
The floating point hardware 2 component is benchmarked in the following hardware configuration:

• Cyclone V 5CGXFC7D6F31C6 device
• Nios II processor
• On-chip memory
• Pipeline bridge
• Timer
• JTAG UART
• Floating point hardware 2

This hardware design achieves FMAX=125 MHz.

Using the FPH2 in Qsys
To instantiate the FPH2 component in your system, in Qsys, locate the Floating Point Hardware 2
component in the Project area of the Component Library. The FPH2 component is located under the
“Embedded Processors” group in the Component Library.

The floating point hardware 2 component editor, shown in the figure below, allows you to selectively
enable any of several groups of floating point custom instructions. By default, all instructions are enabled.

ug-1175
2016.05.03 Floating Point Hardware 2 Benchmarking 3

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2: Floating Point Hardware 2 Component Editor

In most cases, you should leave all floating point custom instructions enabled. However, for the MAX 10
device family in certain configurations, you might need to disable the Roots group.

MAX 10 devices cannot support the FPH2 square root instruction in the following configurations:

• Dual configuration mode
• Compressed configuration mode
• External RAM initialization disabled

The square root instruction uses a lookup table, requiring initialization that the MAX 10 cannot support
in these configurations. Turn off the Roots option if you are targeting a MAX 10 device in one of these
configurations.

When you disable one of the floating point instruction groups, software must implement the functions in
that group (in this case, square root) if they are required. The BSP generator automatically creates this
support. Refer to "Nios II SBT" for details.

The figure below shows Qsys with Nios II connected to the FPH2. The FPH2 has two slaves (s1 and s2).
One slave is for the combinatorial custom instruction and the other slave is for the multi-cycle custom
instruction. Connect both slaves to the Nios II custom_instruction_master by clicking the dot in the
connections patch panel. The following figure shows how the connection should look.

4 Using the FPH2 in Qsys
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3: Floating Point Hardware 2 Component in Qsys

The example in the figure above targets a MAX 10 device. Note the warning message, reminding you that
there could be an issue with RAM initialization for the square root function.

After connecting the FPH2 to the Nios II, generate your system in Qsys as you normally would. Then use
the Quartus® Prime software to compile the generated RTL, or use an RTL simulator, like Modelsim™, to
perform simulations.

Note: If you use the Nios II software build tools (SBT) to create your software projects, the BSP generator
creates a custom Newlib library for your floating point hardware. If you modify your floating point
hardware configuration, you must regenerate and rebuild your BSP to ensure that Newlib is built
correctly. For details, refer to "Nios II SBT".

Related Information

• Nios II SBT on page 18
• Quartus Prime Standard Edition Handbook Volume 1: Design and Synthesis
• Newlib Library on page 17

Floating Point Background
Related Information

• GCC Floating-point Custom Instruction Support Overview
• GCC Single-precision Floating-point Custom Instruction Command Line

ug-1175
2016.05.03 Floating Point Background 5

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

https://www.altera.com/en_US/pdfs/literature/hb/qts/qts_qii5v1.pdf
http://www.alterawiki.com/wiki/Custom_Instructions
http://www.alterawiki.com/wiki/Single-precision_-mcustom-*_options
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

IEEE 754 Format
The figure below shows the fields in an IEEE 754 32-bit single-precision value. The table below provides a
description of the fields. Normal single-precision floating-point numbers have the value (-1)S * 1.FRAC
* 2EXP -127.

Figure 4: Single-Precision Format

s 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

s EXP FRAC

Table 1: Single-Precision Field Descriptions

Mnemonic Name Description

FRAC Fraction Specifies the fractional portion (right of the binary point) of the
mantissa. The integer value (left of the binary point) is always
assumed to be 1 for normal values so it is omitted. This omitted
value is called the hidden bit. The mantissa ranges from ≥1.0 to
<2.0.

EXP Biased Exponent Contains the exponent biased by the value 127. The biased
exponent value 0x0 is reserved for zero and subnormal values.
The biased exponent value 0xff is reserved for infinity and NaN.
The biased exponent ranges from 1 to 0xfe for normal numbers
(-126 to 127 when the bias is subtracted out).

S Sign Specifies the sign. 1 = negative, 0 = positive. Normal values, zero,
infinity, and subnormals are all signed. NaN has no sign, so the S
field is ignored.

The IEEE 754 standard provides the following special values:

• Zero (EXP=0, FRAC=0)
• Subnormal (EXP=0, FRAC≠0)
• Infinity (EXP=255, FRAC=0)
• NaN (EXP=255, FRAC≠0)

Note: Zero, subnormal, and infinity are signed as specified by the S field. NaN has no sign so the S field is
ignored.

Unit in the Last Place

Unit in the last place (ULP) represents the value 2-23, which is approximately 1.192093e-07. The ULP is
the distance between the closest straddling floating-point numbers a and b (a ≤ x ≤ b, a ≠ b), assuming
that the exponent range is not upper-bounded. The IEEE Round-to-Nearest modes produce results with a
maximum error of one-half ULP. The other IEEE rounding modes (Round-to-Zero, Round-to-Positive-
Infinity, and Round-to-Negative-Infinity) produce results with a maximum error of one ULP.

6 IEEE 754 Format
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Encoding of Values

The table below shows how single-precision values are encoded across the 32-bit range from 0x0000_0000
to 0xffff_ffff. Single-precision floating point numbers have the following characteristics:

• Precision (ρ) = 24 bits (23 bits in FRAC plus one hidden bit)
• Radix (β) = 2
• emin = -126
• emax = 127

The most-significant bit of FRAC is 0 for signaling NaNs (sNaN) and 1 for quiet NaNs (qNaN).

Table 2: Encoding of Values

Hexadecimal Value Name S EXP FRAC Value (Decimal)

0x0000_0000 +0 0 0x00 0x00_0000 0.0

0x0000_0001 min pos subnormal 0 0x00 0x00_0001
1.40129846e–45 (βemin-ρ+1 = 2-
126-24+1 = 2-149)

0x007f_ffff max pos subnormal 0 0x00 0x7f_ffff 1.1754942e-38
0x0080_0000 min pos normal 0 0x01 0x00_0000 1.17549435e–38 (βemin = 2-126)
0x3f80_0000 1 0 0x7f 0x00_0000 1.0 (1.0x20)
0x4000_0000 2 0 0x80 0x00_0000 2.0 (1.0x21)

0x7f7f_ffff max pos normal 0 0xfe 0x7f_ffff

3.40282347e+38 ((β – β1- ρ) *
2emax = (2 – 21-24) * 2127 = (2 –
223) * 2127

0x7f80_0000 +∞ 0 0xff 0x00_0000

0x7f80_0001
min sNaN (pos
sign) 0 0xff 0x00_0001

0x7fdf_ffff
max sNaN (pos
sign) 0 0xff 0x3f_ffff

0x7fe0_0000
min qNaN (pos
sign) 0 0xff 0x40_0000

0x7fff_ffff
max qNaN (pos
sign) 0 0xff 0x7f_ffff

0x8000_0000 -0 1 0x00 0x00_0000 -0.0
0x8000_0001 max neg subnormal 1 0x00 0x00_0001 -1.40129846e–45
0x807f_ffff min neg subnormal 1 0x00 0x7f_ffff -1.1754942e-38
0x8080_0000 max neg normal 1 0x01 0x00_0000 -1.17549435e–38
0xff7f_ffff min neg normal 1 0xfe 0x7f_ffff -3.40282347e+38
0xff80_0000 -∞ 1 0xff 0x00_0000

0xff80_0001
max sNaN (neg
sign) 1 0xff 0x00_0001

ug-1175
2016.05.03 Encoding of Values 7

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hexadecimal Value Name S EXP FRAC Value (Decimal)

0xffdf_ffff
min sNaN (neg
sign) 1 0xff 0x3f_ffff

0xffe0_0000
max qNaN (neg
sign) 1 0xff 0x40_0000

0xffff_ffff
min qNaN (neg
sign) 1 0xff 0x7f_ffff

Rounding Schemes
When the exact result of a floating-point operation cannot be exactly represented as a floating-point
value, it must be rounded.

The IEEE 754-2008 standard defines the default rounding mode to be “Round-to-Nearest RoundTiesTo‐
Even”. In the IEEE 754-1985 standard, this is called “Round-to-Nearest-Even”. Both standards also define
additional rounding modes called “Round-to-Zero”, “Round-to-Negative-Infinity”, and “Round-to-
Positive-Infinity”. The IEEE 754-2008 standard introduced a new optional rounding mode called “Round-
to-Nearest RoundTiesAway”.

The FPH2 operations either support Nearest Rounding (RoundTiesAway), Truncation Rounding, or
Faithful Rounding. The type of rounding is a function of the operation and is specified in Table 4-2.
Because the software emulation library (used when FPH operations aren’t provided) and FPH1
implement Round-to-Nearest RoundTiesToEven, there can be differences in the results between FPH2
and these other solutions.

Nearest Rounding

Nearest Rounding corresponds to the IEEE 754-2008 “Round-to-Nearest RoundTiesAway” rounding
mode. Nearest Rounding rounds the result to the nearest single-precision number. When the result is
halfway between two single-precision numbers, the rounding chooses the upper number (larger values for
positive results, smaller value for negative results).

Nearest Rounding has a maximum error of one-half ULP. Errors are not evenly distributed, because
nearest rounding chooses the upper number more often than the lower number when results are
randomly distributed.

Truncation Rounding

Truncation Rounding corresponds to the IEEE 754-2008 “Round-To-Zero” rounding mode. Truncation
Rounding rounds results to the lower nearest single-precision number.

Truncation Rounding has a maximum error of one ULP. Errors are not evenly distributed.

Faithful Rounding

Faithful Rounding rounds results to either the upper or lower nearest single-precision numbers.
Therefore, Faithful Rounding produces one of two possible values. The choice between the two is not
defined.

Faithful Rounding has a maximum error of one ULP. Errors are not guaranteed to be evenly distributed.

Note: Faithful Rounding mode is not defined by IEEE 754.

8 Rounding Schemes
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Rounding Examples

The table below shows examples of the supported rounding schemes for decimal values assuming
rounded normalized decimal values with two digits of precision, like one-digit integer or one-digit
fraction.

Table 3: Decimal Rounding Examples

Unrounded Value Nearest Rounding Truncation Rounding Faithful Rounding

3.34 3.3 3.3 3.3 or 3.4
6.45 6.5 6.4 6.4 or 6.5
2.00 2.0 2.0 2.0 or 2.1
8.99 9.0 8.9 8.9 or 9.0
-1.24 -1.2 -1.2 -1.2 or -1.3
-3.78 -3.8 -3.7 -3.7 or -3.8

Special Cases
The table below lists the results of some IEEE 754 special cases. The x represents a normal value. The
FPH2 are compliant for all of these cases.

Results are assumed to be correctly signed so signs are omitted when they are not important. When the
sign is relevant, signs are shown with extra parenthesis around the value such as (+∞). The value x in the
table represents any non-NaN value.

Comparisons ignore the sign of zero for equality. For example, (-0) == (+0) and (+0) ≤ (-0). Comparisons
that don’t include equality, like > and <, don’t consider -0 to be less than +0. Comparisons return false if
either or both inputs are NaN. The min and max operations return the non-NaN input if one of their
inputs is NaN and the other is non-NaN. Other operations that produce floating-point results return NaN
if any or all of their inputs are NaN.

Table 4: Special Cases

Operation Special Cases

fdivs 0/0=NaN ∞/∞=NaN 0/∞=0, ∞/0=∞ NaN/x=NaN, x/NaN=NaN,
NaN/NaN=NaN

fsubs (+∞)-(+∞)=NaN (-∞)-(-∞)=NaN (-0)-(-0)=+0 NaN-x=NaN, x-NaN=NaN,
NaN-NaN=NaN

fadds (+∞)+(-∞)=NaN (-∞)+(+∞)=NaN (+0)+(-0)=+0,
(-0)+(+0)=+0

NaN+x=NaN, x+NaN=NaN,
NaN+NaN=NaN

fmuls 0*∞=NaN ∞*0=NaN NaN*x=NaN, x*NaN=NaN,
NaN*NaN=NaN

fsqrts sqrt(-0) =-0 sqrt(x) =NaN, x<-
0

sqrt(NAN) =NaN

fixsi & round int(>231-1)=
0x7fffffff, int(+∞)
=0x7fffffff

int(<-231)=
x80000000, int(-
∞)=0x80000000

int(NaN)=undefined

ug-1175
2016.05.03 Rounding Examples 9

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation Special Cases

fmins min((+0),(-0))=(-
0)

min((-0),(+0))=(-
0)

min(NaN,n)=x, min(x,NaN)
=x, min(NaN,NaN)=NaN,
min(+∞,x)=x, min(-∞,x)=-∞

fmaxs max((+0),(-0))
=(+0)

max((-0),(+0))
=(+0)

max(NaN,x)=x, max(x,NaN)
=x, max(NaN,NaN)=NaN,
max(+∞,x)=+∞, max(-∞,x)=x

fcmplts (<) (+∞)<(+∞)=0 (-∞)<(-∞)=0 (-0)<(+0)=0,
(+0)<(-0)=0

NaN<x=0, x<NaN=0,
NaN<NaN=0

fcmples (≤) (+∞)≤(+∞)=1 (-∞)≤(-∞)=1 (+0)≤(-0)=1, (-
0)≤(+0)=1

NaN≤x=0, x≤NaN=0,
NaN≤NaN=0

fcmpgts (>) (+∞)>(+∞)=0 (-∞)>(-∞)=0 (-0)>(+0)=0,
(+0)>(-0)=0

NaN>x=0, x>NaN=0, NaN>
NaN=0

fcmpges (≥) (+∞)≥(+∞)=1 (-∞)≥(-∞)=1 (-0)≥(+0)=1,
(+0)≥(-0)=1

NaN≥x=0, x≥NaN=0,
NaN≥NaN=0

fcmpeqs (=) (+∞)=(+∞)=1 (-∞)=(-∞)=1 (-0)=(+0)=1 (NaN==x)=0, (x==NaN)=0,
(NaN==NaN)=0

fcmpnes (≠) (+∞)≠ (+∞)=0 (-∞)≠ (-∞)=0 (-0)≠(+0)=0 NaN≠x=0, x≠NaN=0,
NaN≠NaN=0

Feature Description
The FPH2 are implemented with one combinatorial custom instruction and one multi-cycle custom
instruction. The combinatorial custom instruction implements the comparison, minimum, maximum,
negate, and absolute operations. The multi-cycle custom instruction implements the add, subtract,
multiply, divide, square root, and conversion operations.

Note: All operations are required. There are no configurable options.

IEEE 754 Compliance
Floating point hardware 2 operations are compliant with the IEEE 754-2008 standard, except for the
following:

• No traps/exceptions.
• No status flags.
• Remainder and conversions between binary and decimal operations are not supported. These are

provided by the software emulation library.
• No support for round-to-nearest-even mode. Nearest Rounding, Truncation Rounding, or Faithful

Rounding is used, depending on the operator.
• Subnormals are not supported by the add, subtract, multiply, divide, and square root operations.

Subnormal inputs are treated as signed zero and subnormal outputs are never created (result is signed
zero instead). This treatment of subnormal values called flush-to-zero.(3)

(3) Subnormals are supported by comparison, minimum, maximum, float-to-integer, negate, and absolute
operations, so these operations are IEEE 754-2008 compliant.

10 Feature Description
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Subnormals cannot be created by the integer2float conversion operation. This behavior is IEEE 754
compliant.

• No distinction between signaling and quiet NaNs as input operands. Any result that produces a NaN
may produce either a signaling or quiet NaN.

• A NaN result with one or more NaN input operands is not guaranteed to return any of the input NaN
values; the NaN result can be a different NaN than the input NaNs.

Exception Handling
The FPH2 component does not support exceptions. Instead, it creates a specific result. The following table
shows the FPH2 results created for operations that would trigger an IEEE 754 exception.

Table 5: IEEE 754 Exception Cases

IEEE 754 Exception FPH2 Result

Invalid NaN
Division by zero Signed infinity
Overflow Signed infinity
Underflow Signed zero
Inexact Normal number

Operations
The table below provides a detailed summary of the FPH2 operations. The values “a” and “b” are assumed
to be single-precision floating-point values. The following list provides detailed information about each
column:

• Operation(4)—Provides the name of the floating-point operation. The names match the names of the
corresponding GCC floating point hardware command-line options except for “round”, which has no
GCC support.

• N—Provides the 8-bit fixed custom instruction N value for the operation. FPH2 component uses fixed
N values that occupy the top 32 Nios II custom instruction N values (224 to 255). The FPH1 also use
fixed N values (252 to 255) and the FPH2 assign the same operations to those N values to maintain
compatibility.

• Cycle(5)—Specifies the number of cycles it takes to execute the instruction. A combinatorial custom
instruction takes 1 cycle. A multi-cycle custom instruction always requires at least 2 cycles. An N-cycle
custom instruction has N-2 register stages inside the custom instruction because the Nios II registers
the result from the custom instruction and also allows another cycle for g wire delays in the source
operand bypass multiplexers. The Cycle column does not include the extra cycles (maximum of 2)
required because the Nios II/f processor stalls the instruction following the multi-cycle custom instruc‐
tion if that instruction uses the result within 2 cycles. These extra cycles are required because multi-
cycle instructions are late-result instructions.

• Result—Describes the computation performed by the operation.

(4) For more information, refer to "-mcustom-<operation>".
(5) For more information, refer to one of the Nios II Processor Reference Handbooks.

ug-1175
2016.05.03 Exception Handling 11

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Subnormal—Describes how the operation treats subnormal inputs and subnormal outputs.
• Rounding(6)—Describes how the FPH2 component rounds the result. The possible choices are

Nearest, Truncation, Faithful, and none.
• GCC Inference—Shows the C code from which GCC infers the custom instruction operation.

Table 6: FPH2 Operation Summary

Operation N Cycles Result Subnormal Rounding GCC
Inference

fdivs 255 16 a/b flush-to-0 Nearest a/b
fsubs 254 5 a-b flush-to-0 Faithful a-b
fadds 253 5 a+b flush-to-0 Faithful a+b
fmuls 252 4 a*b flush-to-0 Faithful a*b
fsqrts 251 8 sqrt(a) flush-to-0 Faithful sqrtf()
floatis 250 4 int_to_float(a) Does not apply Does not apply Casting
fixsi 249 2 float_to_int(a) flush-to-0 Truncation Casting
round 248 2 float_to_int(a) flush-to-0 Nearest lroundf()

(7)

reserved 234 to 247 Undefined undefined
fmins 233 1 (a<b) ? a : b supported None fminf()(7)

fmaxs 232 1 (a<b) ? b : a supported None fmaxf()(7)

fcmplts 231 1 (a<b) ? 1 : 0 supported None a<b
fcmples 230 1 (a≤b) ? 1 : 0 supported None a<=b
fcmpgts 229 1 (a>b) ? 1 : 0 supported None a>b
fcmpges 228 1 (a≥b) ? 1 : 0 supported None a>=b
fcmpeqs 227 1 (a=b) ? 1 : 0 supported None a==b
fcmpnes 226 1 (a≠b) ? 1 : 0 supported None a!=b
fnegs 225 1 -a supported None -a
fabss 224 1 |a| supported None fabsf()

Related Information

• Rounding Schemes on page 8
• -mcustom-<operation> on page 14
• Nios II Classic Processor Reference Handbook
• Nios II Gen2 Processor Reference Handbook

(6) For more information, refer to "Rounding Schemes". A rounding of “none” means that the result does not
need to be rounded.

(7) Nios II GCC cannot reliably replace calls to these Newlib floating-point functions with the equivalent
custom instruction. For information about using these functions, refer to "C Macros for round(), fmins()
, and fmaxs()".

12 Operations
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• C Macros for round(), fmins(), and fmaxs() on page 18
• GCC Command Line Options
• Newlib Documentation page
• GCC Floating-point Custom Instruction Support Overview
• GCC Single-precision Floating-point Custom Instruction Command Line
• Nios II Custom Instruction User Guide

Software Issues

Nios II GCC
The Nios II Embedded Design Suite includes the Nios II GCC. The FPH2 component is supported by
Nios II EDS versions 15.1 and higher (GCC v4.7.3 and higher).

Related Information

• GCC Command Line Options
• GCC Floating-point Custom Instruction Support Overview
• GCC Single-precision Floating-point Custom Instruction Command Line

Inference

The GCC compiler infers most FPH2 operations from C source code. The table in "Operations" lists all
the operations and shows how the FPH2 are inferred.

Note: GCC does not infer Newlib math functions. These functions can be replaced with their equivalent
custom instruction using the __builtin_custom_* facility of GCC.

The system.h header file provides a C #define macro declaration that re-defines the required Newlib
math functions to use the corresponding custom instruction instead.

Related Information

• C Macros for round(), fmins(), and fmaxs() on page 18
• Operations on page 11
• Newlib Documentation page

Conversions

The FPH2 component provides functions for conversion between signed integer types (C short, int and
long types) and 32-bit single-precision floating point types (C float type). The Nios II GCC compiler
infers these hardware functions when compiled code converts data between these types, for example in C
casting.

The FPH2 component does not provide functions for conversion between unsigned integer types and
floating point. When converting between unsigned integer types and float types, the compiler implements
software emulation. Therefore conversion to and from unsigned integers is much slower than conversion
to and from signed integers.

If you do not need the extra range of positive values obtained when converting a float to an unsigned
integer directly, you can use the FPH2 and avoid using the software emulation if you modify your C code

ug-1175
2016.05.03 Software Issues 13

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Invoking-GCC.html#Invoking-GCC
http://www.sourceware.org/newlib/
http://www.alterawiki.com/wiki/Custom_Instructions
http://www.alterawiki.com/wiki/Single-precision_-mcustom-*_options
https://www.altera.com/en_US/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Invoking-GCC.html#Invoking-GCC
http://www.alterawiki.com/wiki/Custom_Instructions
http://www.alterawiki.com/wiki/Single-precision_-mcustom-*_options
http://www.sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

to first cast the float type to an int type or long type and then cast to the desired unsigned integer type. For
example, instead of:

float f;
unsigned int s = (unsigned int)f; // Software emulation

use:

float f;
unsigned int s = (unsigned int)(int)f; // FPH2

The FPH2 provides two operations for converting single-precision floating-point values to signed integer
values:

• fixsi

• round

The fixsi operation performs truncation when converting a float to a signed integer. For example, fixsi
converts 4.8 to 4 and -1.5 to -1. GCC follows the C standard and invokes the fixsi operation whenever
source code uses a cast or any time that C automatically converts a float to a signed integer.

The round operation performs Nearest Rounding (tie-rounds-away) when converting a float to a signed
integer. For example, round converts 4.8 to 5 and -1.5 to -2. Software can invoke the round operation by
calling the custom instruction directly, or by using the #define provided in system.h, which replaces the
Newlib lroundf() function.

Related Information
Newlib Documentation page

Nios II Floating-Point Options
GCC options that are only provided by the Nios II port of GCC are described below.

-mcustom-<operation>

The -mcustom-<operation> command-line option instructs GCC to call custom instructions instead of
emulating the specified operation. The syntax of the -mcustom-<operation> is as follows:

-mcustom-<operation>=N

N custom instruction value, an unsigned decimal. For a complete list of the operations and their N values,
refer to the table in "Operations".

By default, the compiler implements all floating point operations in software. You can also specify
software emulation for an individual instruction with the -mno-custom-<operation> command-line
option.

Note: The command line can specify multiple -mcustom- switches. If there is a conflict, the last switch on
the command line takes effect.

The following command-line options should be passed to GCC to instruct it to use all operations
provided by the FPH2 that can be inferred by GCC. For more information, refer to "Inference".

For users of the Nios II SBT, these command-line arguments are automatically added to the invocation of
GCC by the generated makefiles. For more information, refer to "Nios II SBT".

-mcustom-fabss=224
-mcustom-fnegs=225
-mcustom-fcmpnes=226

14 Nios II Floating-Point Options
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

http://www.sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-mcustom-fcmpeqs=227
-mcustom-fcmpges=228
-mcustom-fcmpgts=229
-mcustom-fcmples=230
-mcustom-fcmplts=231
-mcustom-fmins=232
-mcustom-fmaxs=233
-mcustom-round=248
-mcustom-fixsi=249
-mcustom-floatis=250
-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-mcustom-fdivs=255

Note: There is no command-line option for the round operation.

Related Information

• Inference on page 13
• Operations on page 11
• Nios II SBT on page 18

pragmas

GCC supports pragmas located in source code files to override the -mcustom command-line options. The
pragmas affect the entire source file.

The following pragma tells GCC to call custom instruction N (where N is a decimal integer from 0 to 255)
to implement the specified floating-point operation:

#pragma GCC target(“custom-<operation>=N”)

The following pragma tells GCC to use the software emulation instead of the custom instruction to
implement the specified floating-point operation:

#pragma GCC targer(“no-custom-<operation>”)

Note: There is no pragma support for the round operation.

-mcustom-fpu-cfg

If you specify the -mcustom-fpu-cfg option on the GCC linker command line, it chooses a precompiled
Newlib library with floating-point support. The precompiled libraries only use operations (add, subtract,
multiply, and divide) supported by FPH1.

Note: For FPH2, Altera does not recommend using the -mcustom-fpu-cfg option.

Related Information

• Newlib Documentation page
• Newlib Library on page 17
• "Nios II Options" in GCC Command Options (gcc.gnu.org)

Generic Floating-Point Options

There are options provided by GCC and are not only provided by Nios II GCC. However, these options
have Nios II specific behaviors in some cases.

ug-1175
2016.05.03 pragmas 15

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

http://www.sourceware.org/newlib/
https://gcc.gnu.org/onlinedocs/gcc/Nios-II-Options.html#Nios-II-Options
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fno-math-errno

From the GCC documentation:

“Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.”

If you specify -fno-math-errno on the GCC command line, the compiler maps calls to sqrtf() directly
to the fsqrts custom instruction. Otherwise, by default GCC adds several instructions after the fsqrts
custom instruction to check for a NaN result, indicating an attempt to take the square root of a negative
number. If fsqrts returns NaN, the code calls the Newlib sqrtf() function to set the C errno variable.

Typically, this overhead is undesirable. Altera recommends that you enable -fno-math-errno to
eliminate the overhead of calling sqrtf().

If you use the Nios II SBT, the generated makefiles set -fno-math-errno by default. You can override this
behavior by setting -fmath-errno in the CPPFLAGS make variable.

The -ffinite-math-only option also eliminates the overhead of checking for NaN result for square root.
However, this option also has other effects. Refer to "-ffinite-math-only" for details about this option.

Related Information

• Nios II SBT on page 18
• -ffinite-math-only on page 17
• Newlib Documentation page

-fsingle-precision-constant

From the GCC documentation:

“Treat floating-point constants as single-precision constants instead of implicitly
converting them to double-precision constants.”

For FPH2, the Nios II SBT omits -fsingle-precision-constant from the makefile GCC command line
by default. This behavior contrasts with SBT support for FPH1, which sets this option with -mcustom-
fpu-cfg. The SBT does not use -fsingle-precision-constant for FPH2 because it can cause problems
for double-precision code.

You can enable -fsingle-precision-constant if you are sure it will not cause problems for your code.
In general, it is better to cast floating-point constants to the float type, or use the 'f' suffix (for example
3.14f), because these approaches are localized and independent of compiler options.

Related Information
Nios II SBT on page 18

-funsafe-math-optimizations

From the GCC documentation:

“Allow optimizations for floating-point arithmetic that (a) assume that arguments
and results are valid and (b) may violate IEEE or ANSI standards. When used at link-
time, it may include libraries or startup files that change the default FPU control
word or other similar optimizations.”

16 -fno-math-errno
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

http://www.sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The -funsafe-math-optimizations option is not required, because FPH2 does not implement transcen‐
dental functions (sin(), cos(), tan(), atan(), exp(), and log()).

This option would be required if the floating point hardware implemented the transcendental functions.
GCC requires this option to ensure that application code does not inadvertently use hardware accelerators
that might be problematic.

-ffinite-math-only

From the GCC documentation:

“Allow optimizations for floating-point arithmetic that assume that arguments and
results are not NaNs or +-Infs.”

Programmers are recommended to experiment with this option to determine how it affects their code.

The -ffinite-math-only option also eliminates the GCC overhead created on calls to sqrtf() like –
fno-math-errno.

Related Information
-fno-math-errno on page 16

-fno-trapping-math

From the GCC documentation:

“Compile code assuming that floating-point operations cannot generate user-visible
traps. These traps include division by zero, overflow, underflow, inexact result
and invalid operation. This option implies -fno-signaling-nans. Setting this option
may allow faster code if one relies on “non-stop” IEEE arithmetic, for example.”

Programmers are recommended to experiment with this option to determine how it affects their code.

-frounding-math

From the GCC documentation:

“Disable transformations and optimizations that assume default floating point
rounding behavior. This is round-to-zero for all floating point to integer
conversions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynamically, or
that may be executed with a non-default rounding mode. This option disables
constant folding of floating point expressions at compile-time (which may be
affected by rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.”

Programmers are recommended to experiment with this option to determine how it affects their code.

Newlib Library
The Nios II SBT include the Newlib library (C and math) in precompiled and source versions. However,
the precompiled Newlib libraries are not recommended for FPH2.

You should compile Newlib from source code with individual –mcustom-<operation> options, selected
to match your hardware configuration. This allows Newlib to incorporate the benefits of all FPH2
operations that can be inferred by GCC. If you use the Nios II software build tools, the BSP generator
takes care of this for you.

ug-1175
2016.05.03 -ffinite-math-only 17

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Newlib isgreater(), isgreaterequal(), isless(), islessequal(), and islessgreater macros
defined in math.h use the normal comparison operators (such as. < and >=), so these macros automati‐
cally use the FPH2 comparison operations.

The Newlib fmaxf() and fminf() functions return the maximum or minimum numeric value of their
arguments. NaN arguments are treated as missing data: if one argument is a NaN and the other numeric,
then the functions return the numeric value. The FPH2 fmaxs/fmins operations match this behavior.

Note: If you modify your floating point hardware configuration, you must regenerate and rebuild your
BSP to ensure that Newlib is built correctly. For details, refer to "Nios II SBT".

Related Information

• Nios II SBT on page 18
• -mcustom-<operation> on page 14
• pragmas on page 15
• Newlib Documentation page
• GCC Floating-point Custom Instruction Support Overview

For more information about the GCC Floating-point Custom Instruction Support Overview.

C Macros for round(), fmins(), and fmaxs()
Nios II GCC cannot reliably replace calls to the following Newlib floating-point functions with the
equivalent custom instruction, even though it has –mcustom-<operation> command-line options and
pragma support for them:

• round()

• fmins()

• fmaxs()

Instead, these custom instructions must be invoked directly using the __builtin_custom_* facility of GCC.
system.h provides the required #define macros to invoke the custom instructions directly. The Nios II
Software Build Tools automatically include this header file in your C source files. For information about
built-in functions, refer to the Nios II Custom Instruction User Guide.

Related Information

• GCC Command Line Options
• Newlib Documentation page
• Nios II Custom Instruction User Guide

Nios II SBT
The Software Build Tools (SBT) are tools used to create Altera HAL-based Board Support Packages (BSP)
and application and library makefiles for embedded software running on a Nios II. These tools come in
command-line and Eclipse GUI-based forms.

For more information about the SBT, refer to one of the Nios II Software Developer's Handbooks.

When these tools are used to generate a BSP for a Nios II with the FPH2 component connected to that
Nios II, the sw.tcl file in the component causes the BSP and any applications or libraries that use that BSP
to be aware of the presence of the FPH2. In particular, sw.tcl performs the following functions:

18 C Macros for round(), fmins(), and fmaxs()
ug-1175

2016.05.03

Altera Corporation Nios II Floating Point Hardware 2 Component User Guide

Send Feedback

http://www.sourceware.org/newlib/
http://www.alterawiki.com/wiki/Custom_Instructions
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Invoking-GCC.html#Invoking-GCC
http://www.sourceware.org/newlib/
https://www.altera.com/en_US/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Examines the system you created in Qsys, and determines the correct GCC flags for your floating point
hardware.

• Creates makefile rules to pass the -mcustom-<operation> options to GCC, so it knows to use the
available FPH2 operations instead of the software emulation code to implement the specified floating-
point operations.

• Creates makefile rules to pass the -fno-math-errno option to GCC, to eliminate the overhead of
detecting NaN results and setting the errno variable for calls to sqrtf().

• Adds #define macro declarations to system.h for the Newlib math library routines that GCC does not
reliably replace with custom instructions. For more information, refer to "C Macros for float(), fmins(),
and fmaxs()".

• Creates makefile rules to generate a correct version of Newlib. Uses the GCC flags determined from
your hardware system.

Note: If you modify your floating point hardware configuration, you must regenerate and rebuild your
BSP to ensure that Newlib is built correctly.

Related Information

• C Macros for round(), fmins(), and fmaxs() on page 18
• Operations on page 11
• Nios II Classic Software Developer's Handbook
• GCC Floating-point Custom Instruction Support Overview

For more information about the GCC Floating-point Custom Instruction Support Overview.
• Nios II Gen2 Software Developer's Handbook

Document Revision History for Nios II Floating Point Hardware 2
Component User Guide

Date Version Changes

May 2016 2016.05.03 Enhanced Qsys component editor and software build tools, allowing
selective implementation of floating point functions.

May 2015 2015.05.22 Initial release.

ug-1175
2016.05.03 Document Revision History for Nios II Floating Point Hardware 2... 19

Nios II Floating Point Hardware 2 Component User Guide Altera Corporation

Send Feedback

https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.alterawiki.com/wiki/Custom_Instructions
https://documentation.altera.com/#/link/lro1419794938488/mwh1416946568604/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Floating%20Point%20Hardware%202%20Component%20User%20Guide%20(ug-1175%202016.05.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Nios II Floating Point Hardware 2 Component User Guide
	Introduction
	Overview
	FPH2 Resource Usage
	Floating Point Hardware 2 Benchmarking

	Using the FPH2 in Qsys
	Floating Point Background
	IEEE 754 Format
	Unit in the Last Place
	Encoding of Values

	Rounding Schemes
	Nearest Rounding
	Truncation Rounding
	Faithful Rounding
	Rounding Examples

	Special Cases

	Feature Description
	IEEE 754 Compliance
	Exception Handling
	Operations

	Software Issues
	Nios II GCC
	Inference
	Conversions
	Nios II Floating-Point Options
	-mcustom-<operation>
	pragmas
	-mcustom-fpu-cfg

	Generic Floating-Point Options
	-fno-math-errno
	-fsingle-precision-constant
	-funsafe-math-optimizations
	-ffinite-math-only
	-fno-trapping-math
	-frounding-math

	Newlib Library
	C Macros for round(), fmins(), and fmaxs()
	Nios II SBT

	Document Revision History for Nios II Floating Point Hardware 2 Component User Guide

