Time Delay Digital Beamforming

Description

Radar systems have been using a hybrid of analog and digital beamforming (DBF). Sub-arrays of phase shifters are digitized at the sub-array output. Such systems suffer from limited bandwidth and produce only one beam at a time. DBF solves both problems. Frequency domain DBF is very efficient in resource, but inherently narrowband.

Time Delay Beamforming (TDBF), on the other hand, is natively wideband and allows a scalable number of simultaneous beams. With the advance of high density and low power FPGAs, TDBF is now possible. This reference design uses a very efficient and precise fractional delay algorithm to achieve sub-picosecond time delay. As a result, beamforming at a very fine angle can be achieved.

The design is implemented in Simulink® with Altera's DSP Builder Advanced Blockset. To test the design in hardware, other support components such as chirp generator, target range emulation, RX noise emulation, aperture tapering, and pulse compression are also implemented.

Features

- Highly parameterizable and efficient time delay algorithm to provide precision beam steering
- Altera’s System-in-the-Loop with MATLAB®
- Design includes chirp generator, target range emulation, rx noise emulation, and pulse compression in hardware
- Designed with Simulink/Advanced DSP Builder achieving 300MHz push button preformance
- Arbitrary fine beam angle resolution
 - 0.02 degrees implemented
 - 6-8 beams of 32 antenna in a Stratix® V

Applications

- Active Electronically Scanned Array (AESA)
- Radar, Sonar
- Electronic Warfare and Software Defined Radio
- Phased Array Radio Telescope

For additional information, please contact us at mil@altera.com or contact your local Altera sales representative.

<table>
<thead>
<tr>
<th>Performance Examples</th>
<th>Spec. #1</th>
<th>Spec. #2</th>
<th>Spec. #3</th>
<th>Spec. #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Rate (MHz)</td>
<td>300</td>
<td>300</td>
<td>267</td>
<td>250</td>
</tr>
<tr>
<td>Signal Bandwidth (MHz)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Filter Length</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Expected SNR (dB)</td>
<td>34</td>
<td>52</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Multipliers (18x18)</td>
<td>416</td>
<td>544</td>
<td>800</td>
<td>1056</td>
</tr>
<tr>
<td>Logics (max 260k)</td>
<td>8140</td>
<td>8800</td>
<td>9300</td>
<td>10k</td>
</tr>
<tr>
<td>Block RAM</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Compiled Fmax. (MHz)</td>
<td>310</td>
<td>304</td>
<td>284</td>
<td>284</td>
</tr>
</tbody>
</table>

Performance and resource shown is for 8 simultaneous beams driving 32 antennas with varying parameters including bandwidth and SNR.

Figure 1: System-in-the-loop Digital Time Delay Beamforming Reference Design

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.