Altera® Stratix™ devices have enhanced phase-locked loops (PLLs) that provide designers with flexible system-level clock management that was previously only available in discrete PLL devices. Stratix embedded PLLs meet and exceed the features offered by these high-end discrete devices, reducing the need for other timing devices in the system. This document provides a glossary of PLL and timing terminology.

B

Bank skew See Skew, bank.

Board design skew (extrinsic skew) See Skew, board design (extrinsic skew).

C

Clock-driver skew (intrinsic skew) See Skew, clock-driver (intrinsic skew).

Cross-talk induced jitter See Jitter, cross-talk induced.

Cycle-to-cycle jitter See Jitter, cycle-to-cycle.

D

Downstream PLLs See PLLs, downstream.

Duty cycle Duty cycle is the ratio of the output high time to the total cycle time as shown in Figure 1. Duty cycle is expressed as a percentage (50% is the ideal duty cycle). Duty cycle is important in systems that use both the rising and falling clock edges, as with DDR.

Figure 1. Duty Cycle

![Figure 1. Duty Cycle](image)
E

Extrinsic skew See Skew, board design (extrinsic skew).

H

Half-period jitter See Jitter, half-period.

I

Intrinsic skew See Skew, clock-driver (intrinsic skew).

J

Jitter Jitter can negatively impact data transmission quality. In many cases, other signal deviations, like signal skew and coupled noise are combined and labeled as jitter.

Jitter is the deviation in a clock’s output transitions from its ideal positions, as shown in Figure 2. Deviation (expressed in ±ps) can occur on either the leading edge of a signal or the trailing edge of a signal. Jitter may be induced and coupled onto a clock signal from several different sources and is not uniform over all frequencies.

Excessive jitter can increase the bit error rate (BER) of a communications signal by incorrectly transmitting a data bit stream. In digital systems, jitter can lead to violation of timing margins, causing circuits to behave improperly. Accurate measurement of jitter is necessary for measuring the reliability of a system.

Figure 2. Jitter in Clock Signals
Common sources of jitter include:

- Internal circuitry of the PLL
- Random thermal noise from a crystal
- Other resonating devices
- Random mechanical noise from crystal vibration
- Signal transmitters
- Traces and cables
- Connectors
- Receivers

Beyond these sources, termination dependency, cross talk, reflection, proximity effects, V_{CC} sag, ground bounce, and electromagnetic interference (EMI) from nearby devices and equipment can also increase the amount of jitter in a device.

Reflection and cross-talk frequency-dependent effects may be amplified if an adjacent signal is synchronous and in phase. Aside from noise caused by power supplies and ground, changes in circuit impedance are responsible for most of the jitter in data transmission circuits.

Three types of jitter exist in PLD designs:

- Period jitter
- Cycle-to-cycle jitter
- Half-period jitter

Jitter, cross-talk induced Cross-talk couples and induces jitter from the magnetic fields generated by nearby signals that produce impedance changes in components, connectors, and transmission lines.

Jitter, cycle-to-cycle Cycle-to-cycle jitter is the difference in a clock’s period from one cycle to the next. Cycle-to-cycle jitter is the most difficult to measure usually requiring a timing interval analyzer.

As shown in Figure 3, J1 and J2 are the measured jitter values. The maximum values measured over multiple cycles is the maximum cycle-to-cycle jitter.
Jitter, half-period Half-period jitter is the measure of maximum change in a clock’s output transition from its ideal position during one-half period. Figure 4 illustrates half-period jitter.

Half-period jitter impacts double data rate (DDR) transfer applications. It is measured as:

\[t_{jit(hper)} = \frac{t_{half period} - 1/2 f_0}{2} \text{ where } f_0 \text{ is the frequency of the input signal.} \]

Figure 4. Half-Period Jitter

Jitter, period Period jitter is the change in a clock’s output transition, typically the rising edge, from its ideal position over consecutive clock edges. Period jitter is measured and expressed in time or frequency. Period jitter measurements are used to calculate timing margins in systems, such as \(t_{SU} \) and \(t_{CO} \).

As an example, the rising edge of a clock can occur before data is valid on the data bus on a processor-based system that requires 4 ns of data set-up time coupled with a clock driving the processor with a maximum of 5 ns period jitter. The processor may capture incorrect data and the system will not operate. This is shown in Figure 5.
Jitter, reflection-induced A major source of jitter is signal reflection caused by a mismatch in termination impedance. Even when a line is properly terminated with a value matching the characteristic impedance of the line, the real part of the impedance changes with frequency. The induced jitter becomes frequency-dependent.

M

Modulation width Modulation width is the relative variation in the instantaneous output frequency resulting from spread-spectrum modulation. The wider the modulation, the larger the band of frequencies over which the energy is distributed and the more reduction from the peak. Table 1 lists modulation width.

<table>
<thead>
<tr>
<th>Type of Spread</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center spread</td>
<td>The nominal output frequency is specified, and the spreading results in instantaneous frequencies both above and below the nominal frequency. Example: 100 MHz ± 0.5% = 99.5 to 100.5 MHz</td>
</tr>
<tr>
<td>Down spread</td>
<td>The maximum output frequency is specified, and the spreading results in instantaneous frequencies at or below the maximum specified. Example: 100 MHz – 0.5% = 99.5 to 100 MHz</td>
</tr>
</tbody>
</table>
Modulation profile Modulation profile is the waveform of the spreading signal, which is the low frequency signal that is added to modulate the output. The band of frequencies over which the EMI energy is spread is fixed by the modulation width and does not vary with the modulation profile. Since EMI testing evaluates peaks, spreading energy evenly over the frequency band lowers EMI. A flat spectral profile with minimal peaking shows that the energy is evenly spread across the frequency band.

The following are three types of modulation profiles used in spread-spectrum technology:

- Optimized (Lexmark or Hershey’s Kiss) modulation
- Linear (Triangular) modulation
- Sine wave form modulation

Figure 6 shows the spectrum of these modulation profiles.

Figure 6. Modulation Profiles in Spread Spectrum

P

Period jitter See Jitter, period.

Phase Locked Loop (PLL) A PLL is a closed-loop frequency-control system based on the phase difference between the input signal and the output signal of a controlled oscillator. PLLs can correct large and small frequency phase discrepancies through rough and fine tuning, respectively.

As shown in Figure 7, a PLL consists of a pre-divide counter (the N counter), a phase-detect circuit, a charge pump, a loop filter, a voltage controlled oscillator (VCO), a feedback counter (M), and post-divide counters (K or V).
The phase detector detects the difference in phase and frequency between its reference clock and feedback clock inputs and generates “up” or “down” control signals, based on whether the feedback frequency is lagging or leading the reference frequency. These two control signals are then passed through a charge pump and a loop filter to convert the phase difference to a control voltage, which controls a VCO.

Based on the control voltage, the VCO oscillates at a higher or lower frequency, which affects the phase and frequency of the feedback clock. The VCO stabilizes once the reference clock and the feedback clock have the same phase and frequency.

Inserting the M counter in the feedback path causes the VCO to oscillate at a frequency that is M times the reference clock frequency. If the output of the VCO is tapped, a clock frequency of $M \times F_{IN}$ is generated, where F_{IN} is the frequency of the reference clock.

The VCO output frequency is $F_{VCO} = F_{IN} \times M/N$.

The output frequency of the PLL can be expressed as $F_{OUT} = (F_{IN} \times M) / (N \times K)$.

The reference frequency of the phase-detect circuit can be expressed as $F_{REF} = F_{IN} / N$.

where:

- F_{VCO} = VCO frequency
- F_{IN} = input frequency
- F_{REF} = reference frequency
- M = multiplier, lies in feedback path
- N = divider, lies in reference path
- K or V = post divider
PLL & Timing Glossary

PLL acquisition/lock time
The acquisition/lock time of a PLL is the amount of time required by the PLL to attain the target frequency after power-up, or after a programmed output frequency change.

PLLs, downstream
A downstream PLL is a device that receives a reference-timing signal from another PLL-based device, including devices that use spread-spectrum.

Some examples of downstream PLLs are:

- A PLL cell in an ASIC that receives an external reference signal
- A PLL-based timing module that generates timing signals by multiplying an external reference
- A zero-delay buffer used on a memory module to buffer the clock signal

PLL resolution
The resolution of a PLL is based on the number of bits in the M and N counter. The resolution determines the frequency increment size.

PLL sample rate
The sample rate of a PLL determines how often the inputs are sampled in order to perform phase and frequency correction. It is expressed as F_{REF}/N.

PLL-to-PLL skew
See Skew, PLL-to-PLL.

R

Reflection-induced jitter
See Jitter, reflection-induced.

S

Skew
Skew is the variation in arrival time of two signals that were expected to arrive at the same time. Skew is composed of intrinsic skew and extrinsic skew. Skew can be positive or negative, based on leading or lagging signals, as shown in Figure 8.
In high-speed systems, clock skew greatly affects the timing margin. For example, skew of 2 ns represents a significant portion of a 10-ns cycle time for a 100 MHz system. If the timing budget does not allow for this variation, the system may become unreliable or crash.

Skew, bank Bank skew is the magnitude of the time difference between the outputs of a single device with a single driving input as shown in Figure 9.
Skew, board design (extrinsic skew) Extrinsic skew (board design skew) is caused by layout variation of board traces. Board design skew is the amount of skew caused by board layout issues. Table 2 lists the factors associated with board design skew.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace Length</td>
<td>The amount of time for a signal to propagate down a trace depends on the material of the circuit board and the length of the trace.</td>
</tr>
<tr>
<td>Threshold voltage variation (receiving device)</td>
<td>If a receiving device has a threshold voltage of 1.2 V, and another device has a threshold voltage of 1.5 V, and the rise time of the input signal is 1.0 V/ns, then the two devices will switch 300 ps apart, causing skew.</td>
</tr>
<tr>
<td>Capacitive loading</td>
<td>Differences in capacitive loading on traces cause differences in the clock rise times at the load. This affects the time at which the clock edge crosses the input threshold, causing skew.</td>
</tr>
<tr>
<td>Transmission line termination</td>
<td>With the fast edge rates in clock drivers, traces longer than 4 inches are considered transmission lines. Without proper termination, these lines exhibit transmission line effects, like voltage reflections, which cause skew.</td>
</tr>
</tbody>
</table>

Skew, clock-driver (intrinsic skew) Intrinsic skew is the output skew of the driving device. Intrinsic jitter is caused by the clock driver itself. Most clock-driver skew is caused by differences in output loading. PLL-based device skew can be very small, since the device can be adjusted to compensate for this type of skew.

Skew, PLL-to-PLL PLL-to-PLL skew is the magnitude of the difference in propagation delay times between any specified terminals of two separate devices when both devices operate with the same input signals, the same supply voltages, and the same temperature. Figure 10 illustrates PLL-to-PLL skew ($t_{SK(b)}$).

Figure 10. PLL-to-PLL Skew

![PLL-to-PLL Skew Diagram](image-url)
Spread-spectrum clocking Spectral spreading to modify clock signals helps minimize radiated emissions. The goal of CPU manufacturers is to continue to reduce system level EMI.

While circuit designers have traditionally tried to minimize jitter in clock circuits, a tendency towards intentionally introducing jitter is emerging. Adding jitter to a system can actually improve EMI/RFI performance.

Spread-spectrum clocking schemes distribute the energy of the fundamental clock frequency to minimize peaking of energy at specific frequencies. This reduces the fundamental clock frequency EMI/RFI as well as the higher frequency harmonic components. Figure 11 shows how spread-spectrum clocking works.

By reducing the spectrum peak amplitudes, a device will meet stringent EMI/RFI emission compliance tests and will be more tolerant of EMI/RFI radiation. Spread-spectrum clocking is less expensive than traditional EMI/RFI suppression techniques.

Applications for products with the spread-spectrum feature include clock generators for high-speed RISC or CISC microprocessor systems, such as embedded microcontroller products, laser printers, and copiers.

Figure 11. Effect of Spread-Spectrum Clocking on EMI Radiation

References

- JEDEC Standard 65-A (JESD65-A)