
Application Binary Interface
2015.04.02

NII51016 Subscribe Send Feedback

This chapter describes the Application Binary Interface (ABI) for the Nios® II processor. The ABI
describes:

• How data is arranged in memory
• Behavior and structure of the stack
• Function calling conventions

Data Types

Table 1: Representation of Data C/C++ Types

Type Size (Bytes) Representation

char, signed char 1 two’s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 two’s complement

unsigned short 2 binary

int, signed int 4 two’s complement

unsigned int 4 binary

long, signed long 4 two’s complement

unsigned long 4 binary

float 4 IEEE

double 8 IEEE

pointer 4 binary

long long 8 two’s complement

unsigned long long 8 binary

Memory Alignment
Contents in memory are aligned as follows:

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51016
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51016%202015.04.02)%20Application%20Binary%20Interface&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• A function must be aligned to a minimum of 32-bit boundary.
• The minimum alignment of a data element is its natural size. A data element larger than 32 bits need

only be aligned to a 32-bit boundary.
• Structures, unions, and strings must be aligned to a minimum of 32 bits.
• Bit fields inside structures are always 32-bit aligned.

Register Usage
The ABI adds additional usage conventions to the Nios II register file defined in the Programming Model
chapter of the Nios II Processor Reference Handbook.

Table 2: Nios II ABI Register Usage

Registe
r

Name Used by
Compiler

Callee
Saved(1)

Normal Usage

r0 zero v 0x00000000
r1 at Assembler temporary
r2 v Return value (least-significant 32 bits)
r3 v Return value (most-significant 32 bits)
r4 v Register arguments (first 32 bits)
r5 v Register arguments (second 32 bits)
r6 v Register arguments (third 32 bits)
r7 v Register arguments (fourth 32 bits)
r8 v

Caller-saved general-purpose registers

r9 v
r10 v
r11 v
r12 v
r13 v
r14 v
r15 v
r16 v v

Callee-saved general-purpose registers

r17 v v
r18 v v
r19 v v
r20 v v
r21 v v
r22 v (2)

r23 v (3)

2 Register Usage
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Registe
r

Name Used by
Compiler

Callee
Saved(1)

Normal Usage

r24 et Exception temporary
r25 bt Break temporary
r26 gp v Global pointer
r27 sp v Stack pointer
r28 fp v (4) Frame pointer
r29 ea Exception return address
r30 ba • Normal register set: Break return address

• Shadow register sets: SSTATUS register

r31 ra v Return address

The endianness of values greater than 8 bits is little endian. The upper 8 bits of a value are stored at the
higher byte address.

Related Information

• Frame Pointer Elimination on page 4
• Programming Model

Stacks
The stack grows downward (i.e. towards lower addresses). The stack pointer points to the last used slot.
The frame pointer points to the saved frame pointer near the top of the stack frame.

The figure below shows an example of the structure of a current frame. In this case, function a() calls
function b(), and the stack is shown before the call and after the prologue in the called function has
completed.

(1) A function can use one of these registers if it saves it first. The function must restore the register’s original
value before exiting.

(2) In the GNU Linux operating system, r22 points to the global offset table (GOT). Otherwise, it is available as
a callee-saved general-purpose register.

(3) In the GNU Linux operating system, r23 is used as the thread pointer. Otherwise, it is available as a callee-
saved general-purpose register.

(4) If the frame pointer is not used, the register is available as a callee-saved temporary register. Refer to “Frame
Pointer Elimination” .

NII51016
2015.04.02 Stacks 3

Application Binary Interface Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1: Stack Pointer, Frame Pointer and the Current Frame

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Stack pointer

Outgoing
stack

arguments

Higher addresses

Stack pointer

Lower addresses

Space for
stack

temporaries

Return address

Saved frame
pointerFrame pointer

Each section of the current frame is aligned to a 32-bit boundary. The ABI requires the stack pointer be
32-bit aligned at all times.

Frame Pointer Elimination
The frame pointer is provided for debugger support. If you are not using a debugger, you can optimize
your code by eliminating the frame pointer, using the -fomit-frame-pointer compiler option. When
the frame pointer is eliminated, register fp is available as a temporary register.

Call Saved Registers
The compiler is responsible for generating code to save registers that need to be saved on entry to a
function, and to restore the registers on exit. If there are any such registers, they are saved on the stack,
from high to low addresses, in the following order: ra, fp, sp, gp, r25, r24, r23, r22, r21, r20, r19, r18,
r17, r16, r15, r14, r13, r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, and r2. Stack space is not allocated for
registers that are not saved.

Further Examples of Stacks
There are a number of special cases for stack layout, which are described in this section.

Stack Frame for a Function With alloca()

The Nios II stack frame implementation provides support for the alloca() function, defined in the
Berkeley Software Distribution (BSD) extension to C, and implemented by the gcc compiler. The space
allocated by alloca() replaces the outgoing arguments and the outgoing arguments get new space
allocated at the bottom of the frame.

4 Frame Pointer Elimination
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Nios II C/C++ compiler maintains a frame pointer for any function that calls alloca(), even
if -fomit-frame-pointer is spec if ed

Figure 2: Stack Frame after Calling alloca()

higher addresses

lower addresses

space for
outgoing

stack
 arguments

sp

sp

space for
outgoing

stack
 arguments

memory
allocated

by
alloca()

)(acolla gnillac retfAerofeB

Stack Frame for a Function with Variable Arguments
Functions that take variable arguments (varargs) still have their first 16 bytes of arguments arriving in
registers r4 through r7, just like other functions.

In order for varargs to work, functions that take variable arguments allocate 16 extra bytes of storage on
the stack. They copy to the stack the first 16 bytes of their arguments from registers r4 through r7 as
shown below.

NII51016
2015.04.02 Stack Frame for a Function with Variable Arguments 5

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3: Stack Frame Using Variable Arguments

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Outgoing
stack

arguments

Higher addresses

Lower addresses

Stack pointer
Copy of r7
Copy of r6
Copy of r5
Copy of r4

Space for
stack

temporaries

Stack pointer

Return address

Saved frame
pointerFrame pointer

Stack Frame for a Function with Structures Passed By Value

Functions that take struct value arguments still have their first 16 bytes of arguments arriving in registers
r4 through r7, just like other functions.

If part of a structure is passed using registers, the function might need to copy the register contents back
to the stack. This operation is similar to that required in the variable arguments case as shown in the
figure above, Stack Frame Using Variable Arguments.

Related Information
Stack Frame for a Function with Variable Arguments on page 5

Function Prologues
The Nios II C/C++ compiler generates function prologues that allocate the stack frame of a function for
storage of stack temporaries and outgoing arguments. In addition, each prologue is responsible for saving
the state of the calling function. This entails saving certain registers on the stack. These registers, the
callee-saved registers, are listed in Nios II ABI Register Usage Table in the Register Usage section. A
function prologue is required to save a callee-saved register only if the function uses the register.

Given the function prologue algorithm, when doing a back trace, a debugger can disassemble instructions
and reconstruct the processor state of the calling function.

6 Stack Frame for a Function with Structures Passed By Value
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: An even better way to find out what the prologue has done is to use information stored in the
DWARF-2 debugging fields of the executable and linkable format (.elf) file.

The instructions found in a Nios II function prologue perform the following tasks:

• Adjust the stack pointer (to allocate the frame)
• Store registers to the frame
• Set the frame pointer to the location of the saved frame pointer

Example 1: A function prologue

/* Adjust the stack pointer */
addi sp, sp, -16 /* make a 16-byte frame */

/* Store registers to the frame */
stw ra, 12(sp) /* store the return address */
stw fp, 8(sp) /* store the frame pointer*/
stw r16, 4(sp) /* store callee-saved register */
stw r17, 0(sp) /* store callee-saved register */

/* Set the new frame pointer */
addi fp, sp, 8

Related Information
Register Usage on page 2

Prologue Variations
The following variations can occur in a prologue:

• If the function’s frame size is greater than 32,767 bytes, extra temporary registers are used in the
calculation of the new stack pointer as well as for the offsets of where to store callee-saved registers.
The extra registers are needed because of the maximum size of immediate values allowed by the Nios II
processor.

• If the frame pointer is not in use, the final instruction, recalculating the frame pointer, is not generated.
• If variable arguments are used, extra instructions store the argument registers on the stack.
• If the compiler designates the function as a leaf function, the return address is not saved.
• If optimizations are on, especially instruction scheduling, the order of the instructions might change

and become interlaced with instructions located after the prologue.

Arguments and Return Values
This section discusses the details of passing arguments to functions and returning values from functions.

Arguments
The first 16 bytes to a function are passed in registers r4 through r7. The arguments are passed as if a
structure containing the types of the arguments were constructed, and the first 16 bytes of the structure
are located in r4 through r7.

A simple example:

int function (int a, int b);

NII51016
2015.04.02 Prologue Variations 7

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16 bytes of the struct are assigned to r4 through r7. Therefore r4 is assigned the value of a and
r5 the value of b.

The first 16 bytes to a function taking variable arguments are passed the same way as a function not taking
variable arguments. The called function must clean up the stack as necessary to support the variable
arguments.

Refer to Stack Frame for a Function with Variable Arguments

Related Information
Stack Frame for a Function with Variable Arguments on page 5

Return Values
Return values of types up to 8 bytes are returned in r2 and r3. For return values greater than 8 bytes, the
caller must allocate memory for the result and must pass the address of the result memory as a hidden
zero argument.

The hidden zero argument is best explained through an example.

Example 2: Returned struct

/* b() computes a structure-type result and returns it */
STRUCT b(int i, int j)
{
 ...
 return result;
}
void a(...)
{
 ...
 value = b(i, j);
}

In the example above, if the result type is no larger than 8 bytes, b() returns its result in r2 and r3.

If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats this program as if a() had
passed a pointer to b(). The example below shows how the Nios II C/C++ compiler sees the code in the
Returned Struct example above.

Example 3: Returned struct is Larger than 8 Bytes

void b(STRUCT *p_result, int i, int j)
{
 ...
 *p_result = result;
}

void a(...)
{
 STRUCT value;
 ...

8 Return Values
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 b(&value, i, j);
}

DWARF-2 Definition
Registers r0 through r31 are assigned numbers 0 through 31 in all DWARF-2 debugging sections.

Object Files

Table 3: Nios II-Specific ELF Header Values

Member Value

e_ident[EI_CLASS] ELFCLASS32

e_ident[EI_DATA] ELFDATA2LSB

e_machine EM_ALTERA_NIOS2 == 113

Relocation
In a Nios II object file, each relocatable address reference possesses a relocation type. The relocation type
specifies how to calculate the relocated address. The bit mask specifies where the address is found in the
instruction.

Table 4: Nios II Relocation Calculation

Name Value Overflow

check
(5)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_NONE 0 n/a None n/a n/a
R_NIOS2_S16 1 Yes S + A 0x003FFFC0 6
R_NIOS2_U16 2 Yes S + A 0x003FFFC0 6
R_NIOS2_PCREL16 3 Yes ((S + A) – 4) – PC 0x003FFFC0 6
R_NIOS2_CALL26(7) 4 Yes (S + A) >> 2 0xFFFFFFC0 6
R_NIOS2_CALL26_NOAT 41 No (S + A) >> 2 0xFFFFFFC0 6
R_NIOS2_IMM5 5 Yes (S + A) & 0x1F 0x000007C0 6
R_NIOS2_CACHE_OPX 6 Yes (S + A) & 0x1F 0x07C00000 22
R_NIOS2_IMM6 7 Yes (S + A) & 0x3F 0x00000FC0 6
R_NIOS2_IMM8 8 Yes (S + A) & 0xFF 0x00003FC0 6
R_NIOS2_HI16 9 No ((S + A) >> 16) &

0xFFFF
0x003FFFC0 6

NII51016
2015.04.02 DWARF-2 Definition 9

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Value Overflow

check
(5)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_LO16 10 No (S + A) & 0xFFFF 0x003FFFC0 6
R_NIOS2_HIADJ16 11 No Adj(S+A) 0x003FFFC0 6
R_NIOS2_BFD_RELOC_32 12 No S + A 0xFFFFFFFF 0
R_NIOS2_BFD_RELOC_16 13 Yes (S + A) & 0xFFFF 0x0000FFFF 0
R_NIOS2_BFD_RELOC_8 14 Yes (S + A) & 0xFF 0x000000FF 0
R_NIOS2_GPREL 15 No (S + A – GP) &

0xFFFF
0x003FFFC0 6

R_NIOS2_GNU_VTINHERIT 16 n/a None n/a n/a
R_NIOS2_GNU_VTENTRY 17 n/a None n/a n/a
R_NIOS2_UJMP 18 No ((S + A) >> 16) &

0xFFFF,

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_CJMP 19 No ((S + A) >> 16) &
0xFFFF,

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_CALLR 20 No ((S + A) >> 16) &
0xFFFF)

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_ALIGN 21 n/a None n/a n/a
R_NIOS2_GOT16 22(6) Yes G 0x003FFFC0 6
R_NIOS2_CALL16 23(6) Yes G 0x003FFFC0 6
R_NIOS2_GOTOFF_LO 24(6) No (S + A – GOT) &

0xFFFF
0x003FFFC0 6

R_NIOS2_GOTOFF_HA 25(6) No Adj (S + A – GOT) 0x003FFFC0 6
R_NIOS2_PCREL_LO 26(6) No (S + A – PC) &

0xFFFF
0x003FFFC0 6

R_NIOS2_PCREL_HA 27(6) No Adj (S + A – PC) 0x003FFFC0 6
R_NIOS2_TLS_GD16 28(6) Yes Refer to Thread-

Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LDM16 29(6) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

10 Relocation
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Value Overflow

check
(5)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_TLS_LDO16 30(6) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_IE16 31(6) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LE16 32(6) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_DTPMOD 33(6) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_TLS_DTPREL 34(6) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_TLS_TPREL 35(6) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_COPY 36(6) No Refer to Copy
Relocation section.

n/a n/a

R_NIOS2_GLOB_DAT 37(6) No S 0xFFFFFFFF 0
R_NIOS2_JUMP_SLOT 38(6) No Refer to Jump Slot

Relocation section.
0xFFFFFFFF 0

R_NIOS2_RELATIVE 39(6) No BA+A 0xFFFFFFFF 0
R_NIOS2_GOTOFF 40(6) No S+A 0xFFFFFFFF 0
R_NIOS2_GOT_LO 42(6) No G & 0xFFFF 0x003FFFC0 6
R_NIOS2_GOT_HA 43(6) No Adj(G) 0x003FFFC0 6
R_NIOS2_CALL_LO 44(6) No G & 0xFFFF 0x003FFFC0 6
R_NIOS2_CALL_HA 45(6) No Adj(G) 0x003FFFC0 6

(5) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

(6) Relocation support is provided for Linux systems.
(7) Linker is permitted to clobber register AT in the course of resolving overflows

NII51016
2015.04.02 Relocation 11

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Expressions in the table above use the following conventions:

• S: Symbol address
• A: Addend
• PC: Program counter
• GP: Global pointer
• Adj(X): (((X >> 16) & 0xFFFF) + ((X >> 15) & 0x1)) & 0xFFFF
• BA: The base address at which a shared library is loaded
• GOT: The value of the Global Offset Table (GOT) pointer (Linux only)
• G: The offset into the GOT for the GOT slot for symbol S (Linux only)

With the information in the table above, any Nios II instruction can be relocated by manipulating it as an
unsigned 32-bit integer, as follows:

Xr = ((R << B) & M | (X & ~M));

where:

• R is the relocated address, calculated in the above table
• B is the bit shift
• M is the bit mask
• X is the original instruction
• Xr is the relocated instruction

Related Information

• Jump Slot Relocation on page 14
• Copy Relocation on page 14
• Thread-Local Storage on page 14

ABI for Linux Systems
This section describes details specific to Linux systems beyond the Linux-specific information in Nios II
ABI Register Usage Table and the Nios II Relocation Calculation Table.

Related Information

• Relocation on page 9
• Register Usage on page 2

Linux Toolchain Relocation Information
Dynamic relocations can appear in the runtime relocation sections of executables and shared objects, but
never appear in object files (with the exception of R_NIOS2_TLS_DTPREL, which is used for debug
information). No other relocations are dynamic.

Table 5: Dynamic Relocations

R_NIOS2_TLS_DTPMOD
R_NIOS2_TLS_DTPREL
R_NIOS2_TLS_TPREL
R_NIOS2_COPY

12 ABI for Linux Systems
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

R_NIOS2_GLOB_DAT
R_NIOS2_JUMP_SLOT
R_NIOS2_RELATIVE

A global offset table (GOT) entry referenced using R_NIOS2_GOT16, R_NIOS2_GOT_LO and/or
R_NIOS2_GOT_HA must be resolved at load time. A GOT entry referenced only using
R_NIOS2_CALL16, R_NIOS2_CALL_LO and/or R_NIOS2_CALL_HA can initially refer to a procedure
linkage table (PLT) entry and then be resolved lazily.

Because the TP-relative relocations are 16-bit relocations, no dynamic object using local dynamic or local
executable thread-local storage (TLS) can have more than 64 KB of TLS data. New relocations might be
added to support this in the future.

Several new assembler operators are defined to generate the Linux-specific relocations, as listed in the
table below.

Table 6: Relocation and Operator

Relocation Operator

R_NIOS2_GOT16 %got

R_NIOS2_CALL16 %call

R_NIOS2_GOTOFF_LO %gotoff_hiadj

R_NIOS2_GOTOFF_HA %gotoff_lo

R_NIOS2_PCREL_LO %hiadj

R_NIOS2_PCREL_HA %lo

R_NIOS2_TLS_GD16 %tls_gd

R_NIOS2_TLS_LDM16 %tls_ldm

R_NIOS2_TLS_LDO16 %tls_ldo

R_NIOS2_TLS_IE16 %tls_ie

R_NIOS2_TLS_LE16 %tls_le

R_NIOS2_TLS_DTPREL %tls_ldo

R_NIOS2_GOTOFF %gotoff

R_NIOS2_GOT_LO %got_lo

R_NIOS2_GOT_HA %got_hiadj

R_NIOS2_CALL_LO %call_lo

R_NIOS2_CALL_HA %call_hiadj

The %hiadj and %lo operators generate PC-relative or non-PC-relative relocations, depending whether
the expression being relocated is PC-relative. For instance, %hiadj(_gp_got - .) generates
R_NIOS2_PCREL_HA. %tls_ldo generates R_NIOS2_TLS_LDO16 when used as an immediate
operand, and R_NIOS2_TLS_DTPREL when used with the .word directive.

NII51016
2015.04.02 Linux Toolchain Relocation Information 13

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Copy Relocation
The R_NIOS2_COPY relocation is used to mark variables allocated in the executable that are defined in a
shared library. The variable’s initial value is copied from the shared library to the relocated location.

Jump Slot Relocation
Jump slot relocations are used for the PLT.

For information about the PLT, refer to "Procedure Linkage Table" section.

Related Information

• Procedure Linkage Table on page 20
• Procedure Linkage Table on page 20

Thread-Local Storage
The Nios II processor uses the Variant I model for thread-local storage.

The end of the thread control block (TCB) is located 0x7000 bytes before the thread pointer. The TCB is
eight bytes long. The first word is the dynamic thread pointer (DTV) pointer and the second word is
reserved. Each module’s dynamic thread pointer is biased by 0x8000 (when retrieved using
__tls_get_addr). The thread library can store additional private information before the TCB.

In the GNU Linux toolchain, the GOT pointer (_gp_got) is always kept in r22, and the thread pointer is
always kept in r23.

In the following examples, any registers can be used, except that the argument to __tls_get_addr is
always passed in r4 and its return value is always returned in r2. Calls to __tls_get_addr must use the
normal position-independent code (PIC) calling convention in PIC code; these sequences are for example
only, and the compiler might generate different sequences. No linker relaxations are defined.

Example 4: General Dynamic Model

addi r4, r22, %tls_gd(x) # R_NIOS2_TLS_GD16 x
call __tls_get_addr # R_NIOS2_CALL26 __tls_get_addr
Address of x in r2

In the general dynamic model, a two-word GOT slot is allocated for x, as shown in "GOT Slot for General
Dynamic Model" example.

Example 5: GOT Slot for General Dynamic Model

GOT[n] R_NIOS2_TLS_DTPMOD x
GOT[n+1] R_NIOS2_TLS_DTPREL x

Example 6: Local Dynamic Model

addi r4, r22, %tls_ldm(x) # R_NIOS2_TLS_LDM16 x
call __tls_get_addr # R_NIOS2_CALL26 __tls_get_addr
addi r5, r2, %tls_ldo(x) # R_NIOS2_TLS_LDO16 x
Address of x in r5

14 Copy Relocation
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ldw r6, %tls_ldo(x2)(r2) # R_NIOS2_TLS_LDO16 x2
Value of x2 in r6

One 2-word GOT slot is allocated for all R_NIOS2_TLS_LDM16 operations in the linked object. Any
thread-local symbol in this object can be used, as shown in "GOT Slot with Thread-Local Storage"
example.

Example 7: GOT Slot with Thread-Local Storage

GOT[n] R_NIOS2_TLS_DTPMOD x
GOT[n+1] 0

Example 8: Initial Exec Model

ldw r4, %tls_ie(x)(r22) # R_NIOS2_TLS_IE16 x
add r4, r23, r4
Address of x in r4

A single GOT slot is allocated to hold the offset of x from the thread pointer, as shown in "GOT SLot for
Initial Exec Model" example.

Example 9: GOT Slot for Initial Exec Model

GOT[n] R_NIOS2_TLS_TPREL x

Example 10: Local Exec Model

addi r4, r23, %tls_le(x) # R_NIOS2_TLS_LE16 x
Address of x in r4

There is no GOT slot associated with the local exec model.

Debug information uses the GNU extension DW_OP_GNU_push_tls_address.

Example 11: Debug Information

.byte 0x03 # DW_OP_addr

.word %tls_ldo(x) # R_NIOS2_TLS_DTPREL x

.byte 0xe0 # DW_OP_GNU_push_tls_address

NII51016
2015.04.02 Thread-Local Storage 15

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Linux Function Calls
Register r23 is reserved for the thread pointer on GNU Linux systems. It is initialized by the C library and
it may be used directly for TLS access, but not modified. On non-Linux systems r23 is a general-purpose,
callee-saved register.

The global pointer, r26 or gp, is globally fixed. It is initialized in startup code and always valid on entry to
a function. This method does not allow for multiple gp values, so gp-relative data references are only
possible in the main application (that is, from position dependent code). gp is only used for small data
access, not GOT access, because code compiled as PIC may be used from shared libraries. The linker may
take advantage of gp for shorter PLT sequences when the addresses are in range. The compiler needs an
option to disable use of gprel; the option is necessary for applications with excessive amounts of small
data. For comparison, XUL (Mozilla display engine, 16 MB code, 2 MB data) has only 27 KB of small data
and the limit is 64 KB. This option is separate from -G 0, because -G 0 creates ABI incompatibility. A file
compiled with -G 0 puts global int variables into .data but files compiled with -G 8 expect such int
variables to be in .sdata.

PIC code which needs a GOT pointer needs to initialize the pointer locally using nextpc; the GOT pointer
is not passed during function calls. This approach is compatible with both static relocatable binaries and
System V style shared objects. A separate ABI is needed for shared objects with independently relocatable
text and data.

Stack alignment is 32-bit. The frame pointer points at the top of the stack when it is in use, to simplify
backtracing. Insert alloca between the local variables and the outgoing arguments. The stack pointer
points to the bottom of the outgoing argument area.

A large struct return value is handled by passing a pointer in the first argument register (not the disjoint
return value register).

Linux Operating System Call Interface

Table 7: Signals for Unhandled Instruction-Related Exceptions

Exception Signal

Supervisor-only instruction address SIGSEGV

TLB permission violation (execute) SIGSEGV

Supervisor-only instruction SIGILL

Unimplemented instruction SIGILL

Illegal instruction SIGILL

Break instruction SIGTRAP

Supervisor-only data address SIGSEGV

Misaligned data address SIGBUS

Misaligned destination address SIGBUS

Division error SIGFPE

TLB Permission Violation (read) SIGSEGV

TLB Permission Violation (write) SIGSEGV

16 Linux Function Calls
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are no floating-point exceptions. The optional floating point unit (FPU) does not support
exceptions and any process wanting exact IEEE conformance needs to use a soft-float library (possibly
accelerated by use of the attached FPU).

The break instruction in a user process might generate a SIGTRAP signal for that process, but is not
required to. Userspace programs should not use the break instruction and userspace debuggers should
not insert one. If no hardware debugger is connected, the OS should assure that the break instruction
does not cause the system to stop responding.

For information about userspace debugging, refer to "Userspace Breakpoints”.

The page size is 4 KB. Virtual addresses in user mode are all below 2 GB due to the MMU design. The
NULL page is not mapped.

Related Information
Userspace Breakpoints on page 22

Linux Process Initialization
The stack pointer, sp, points to the argument count on the stack.

Table 8: Stack Initial State at User Process Start

Purpose Start Address Length

Unspecified High addresses
Referenced strings Varies
Unspecified
Null auxilliary vector entry 4 bytes
Auxilliary vector entries 8 bytes each
NULL terminator for envp 4 bytes
Environment pointers sp + 8 + 4 × argc 4 bytes each
NULL terminator for argv sp + 4 + 4 × argc 4 bytes
Argument pointers sp + 4 4 bytes each
Argument count sp 4 bytes
Unspecified Low addresses

If the application should register a destructor function with atexit, the pointer is placed in r4. Otherwise
r4 is zero.

The contents of all other registers are unspecified. User code should set fp to zero to mark the end of the
frame chain.

The auxiliary vector is a series of pairs of 32-bit tag and 32-bit value, terminated by an AT_NULL tag.

Linux Position-Independent Code
Every position-independent code (PIC) function which uses global data or global functions must load the
value of the GOT pointer into a register. Any available register may be used. If a caller-saved register is
used the function must save and restore it around calls. If a callee-saved register is used it must be saved
and restored around the current function. Examples in this document use r22 for the GOT pointer.

NII51016
2015.04.02 Linux Process Initialization 17

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The GOT pointer is loaded using a PC-relative offset to the _gp_got symbol, as shown below.

Example 12: Loading the GOT Pointer

nextpc r22
1:
 orhi r1, %hiadj(_gp_got - 1b) # R_NIOS2_PCREL_HA _gp_got
 addi r1, r1, %lo(_gp_got - 1b) # R_NIOS2_PCREL_LO _gp_got - 4
 add r22, r22, r1
 # GOT pointer in r22

Data may be accessed by loading its location from the GOT. A single word GOT entry is generated for
each referenced symbol.

Example 13: Small GOT Model Entry for Global Symbols

addi r3, r22, %got(x) # R_NIOS2_GOT16

GOT[n] R_NIOS2_GLOB_DAT x

Example 14: Large GOT Model Entry for Global Symbols

movhi r3, %got_hiadj(x) # R_NIOS2_GOT_HA
addi r3, r3, %got_lo(x) # R_NIOS2_GOT_LO
add r3, r3, r22

GOT[n] R_NIOS2_GLOB_DAT x

For local symbols, the symbolic reference to x is replaced by a relative relocation against symbol zero, with
the link time address of x as an addend, as shown in the example below.

Example 15: Local Symbols for small GOT Model

addi r3, r22, %got(x) # R_NIOS2_GOT16

GOT[n] R_NIOS2_RELATIVE +x

Example 16: Local Symbols for large GOT Model

movhi r3, %got_hiadj(x) # R_NIOS2_GOT_HA
addi r3, r3, %got_lo(x) # R_NIOS2_GOT_LO
add r3, r3, r22

GOT[n] R_NIOS2_RELATIVE +x

18 Linux Position-Independent Code
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The call and jmpi instructions are not available in position-independent code. Instead, all calls are made
through the GOT. Function addresses may be loaded with %call, which allows lazy binding. To initialize
a function pointer, load the address of the function with %got instead. If no input object requires the
address of the function its GOT entry is placed in the PLT GOT for lazy binding, as shown in the example
below.

For information about the PLT, refer to the "Procedure Linkage Table" section.

Example 17: Small GOT Model entry in PLT GOT

ldw r3, %call(fun)(r22) # R_NIOS2_CALL16 fun
callr r3

PLTGOT[n] R_NIOS_JUMP_SLOT fun

Example 18: Large GOT Model entry in PLT GOT

movhi r3, %call_hiadj(x) # R_NIOS2_CALL_HA
addi r3, r3, %call_lo(x) # R_NIOS2_CALL_LO
add r3, r3, r22
ldw r3, 0(r3)
callr r3

PLTGOT[n] R_NIOS_JUMP_SLOT fun

When a function or variable resides in the current shared object at compile time, it can be accessed via a
PC-relative or GOT-relative offset, as shown below.

Example 19: Accessing Function or Variable in Current Shared Object

orhi r3, %gotoff_hiadj(x) # R_NIOS2_GOTOFF_HA x
addi r3, r3, %gotoff_lo(x) # R_NIOS2_GOTOFF_LO x
add r3, r22, r3
Address of x in r3

Multiway branches such as switch statements can be implemented with a table of GOT-relative offsets, as
shown below.

Example 20: Switch Statement Implemented with Table

Scaled table offset in r4
 orhi r3, %gotoff_hiadj(Ltable) # R_NIOS2_GOTOFF_HA Ltable
 addi r3, r3, %gotoff_lo(Ltable) # R_NIOS2_GOTOFF_LO Ltable
 add r3, r22, r3 # r3 == &Ltable
 add r3, r3, r4
 ldw r4, 0(r3) # r3 == Ltable[index]
 add r4, r4, r22 # Convert offset into destina-
tion
 jmp r4
 ...

NII51016
2015.04.02 Linux Position-Independent Code 19

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Ltable:
 .word %gotoff(Label1)
 .word %gotoff(Label2)
 .word %gotoff(Label3)

Related Information
Procedure Linkage Table on page 20

Linux Program Loading and Dynamic Linking

Global Offset Table
Because shared libraries are position-independent, they can not contain absolute addresses for symbols.
Instead, addresses are loaded from the GOT.

The first word of the GOT is filled in by the link editor with the unrelocated address of the _DYNAMIC,
which is at the start of the dynamic section. The second and third words are reserved for the dynamic
linker.

For information about the dynamic linker, refer to the "Procedure Linkage Table” section.

The linker-defined symbol _GLOBAL_OFFSET_TABLE_ points to the reserved entries at the beginning of the
GOT. The linker-defined symbol _gp_got points to the base address used for GOT-relative relocations.
The value of _gp_got might vary between object files if the linker creates multiple GOT sections.

Related Information
Procedure Linkage Table on page 20

Function Addresses
Function addresses use the same SHN_UNDEF and st_value convention for PLT entries as in other
architectures, such as x86_64.

Procedure Linkage Table

Function calls in a position-dependent executable may use the call and jmpi instructions, which address
the contents of a 256-MB segment. They may also use the %lo, %hi, and %hiadj operators to take the
address of a function. If the function is in another shared object, the link editor creates a callable stub in
the executable called a PLT entry. The PLT entry loads the address of the called function from the PLT
GOT (a region at the start of the GOT) and transfers control to it.

The PLT GOT entry needs a relocation referring to the final symbol, of type R_NIOS2_JUMP_SLOT. The
dynamic linker may immediately resolve it, or may leave it unmodified for lazy binding. The link editor
fills in an initial value pointing to the lazy binding stubs at the start of the PLT section.

Each PLT entry appears as shown in the example below.

Example 21: PLT Entry

.PLTn:
 orhi r15, r0, %hiadj(plt_got_slot_address)
 ldw r15, %lo(plt_got_slot_address)(r15)
 jmp r15

20 Linux Program Loading and Dynamic Linking
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example below shows the PLT entry when the PLT GOT is close enough to the small data area for a
relative jump.

Example 22: PLT Entry Near Small Data Area

.PLTn:
 ldw r15, %gprel(plt_got_slot_address)(gp)
 jmp r15

Example 23: Initial PLT Entry

res_0:
 br .PLTresolve
 ...
.PLTresolve:
 orhi r14, r0, %hiadj(res_0)
 addi r14, r14, %lo(res_0)
 sub r15, r15, r14
 orhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_)
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

In front of the initial PLT entry, a series of branches start of the initial entry (the nextpc instruction).
There is one branch for each PLT entry, labelled res_0 through res_N. The last several branches may be
replaced by nop instructions to improve performance. The link editor arranges for the Nth PLT entry to
point to the Nth branch; res_N – res_0 is four times the index into the .rela.plt section for the
corresponding R_JUMP_SLOT relocation.

The dynamic linker initializes GOT[1] to a unique identifier for each library and GOT[2] to the address of
the runtime resolver routine. In order for the two loads in .PLTresolve to share the same %hiadj,
_GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary.

The runtime resolver receives the original function arguments in r4 through r7, the shared library
identifier from GOT[1] in r14, and the relocation index times four in r15. The resolver updates the
corresponding PLT GOT entry so that the PLT entry transfers control directly to the target in the future,
and then transfers control to the target.

In shared objects, the call and jmpi instructions can not be used because the library load address is not
known at link time. Calls to functions outside the current shared object must pass through the GOT. The
program loads function addresses using %call, and the link editor may arrange for such entries to be
lazily bound. Because PLT entries are only used for lazy binding, shared object PLTs are smaller, as shown
below.

Example 24: Shared Object PLT

.PLTn:
 orhi r15, r0, %hiadj(index * 4)
 addi r15, r15, %lo(index * 4)
 br .PLTresolve

NII51016
2015.04.02 Procedure Linkage Table 21

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 25: Initial PLT Entry

.PLTresolve:
 nextpc r14
 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
 add r13, r13, r14
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

If the initial PLT entry is out of range, the resolver can be inline, because it is only one instruction longer
than a long branch, as shown below.

Example 26: Initial PLT Entry Out of Range

.PLTn:
 orhi r15, r0, %hiadj(index * 4)
 addi r15, r15, %lo(index * 4)
 nextpc r14
 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
 add r13, r13, r14
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

Linux Program Interpreter
The program interpreter is /lib/ld.so.1.

Linux Initialization and Termination Functions
The implementation is responsible for calling DT_INIT(), DT_INIT_ARRAY(), DT_PREINIT_ARRAY(),
DT_FINI(), and DT_FINI_ARRAY().

Linux Conventions

System Calls
The Linux system call interface relies on the trap instruction with immediate argument zero. The system
call number is passed in register r2. The arguments are passed in r4, r5, r6, r7, r8, and r9 as necessary.
The return value is written in r2 on success, or a positive error number is written to r2 on failure. A flag
indicating successful completion, to distinguish error values from valid results, is written to r7; 0 indicates
syscall success and 1 indicates r2 contains a positive errno value.

Userspace Breakpoints
Userspace breakpoints are accomplished using the trap instruction with immediate operand 31 (all ones).
The OS must distinguish this instruction from a trap 0 system call and generate a trap signal.

Atomic Operations
The Nios II architecture does not have atomic operations (such as load linked and store conditional).
Atomic operations are emulated using a kernel system call via the trap instruction. The toolchain

22 Linux Program Interpreter
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

provides intrinsic functions which perform the system call. Applications must use those functions rather
than the system call directly. Atomic operations may be added in a future processor extension.

Processor Requirements
Linux requires that a hardware multiplier be present. The full 64-bit multiplier (mulx instructions) is not
required.

Development Environment
The following symbols are defined:

• __nios2

• __nios2__

• __NIOS2

• __NIOS2__

Document Revision History

Table 9: Document Revision History

Date Version Changes

April 2015 2015.04.02 Updated Tables:

• Nios II Relocation Calculation
• Relocation and Operator

New examples in Linux Position-Independent Code section:

• Large GOT Entry for Global Symbols
• Local Symbols for large GOT Model
• Large GOT Model entry in PLT GOT

Linux Toolchain Relocation Information section updated.

February 2014 13.1.0 Removed references to SOPC Builder.

May 2011 11.0.0 Maintenance release.

December 2010 10.1.0 Added Linux ABI section.

July 2010 10.0.0 • DWARF-2 register assignments
• ELF header values
• r23 used as thread pointer for Linux
• Linux toolchain relocation information
• Symbol definitions for development environment

November 2009 9.1.0 Maintenance release.

March 2009 9.0.0 Backwards-compatible change to the eret instruction B field
encoding.

November 2008 8.1.0 Maintenance release.

NII51016
2015.04.02 Processor Requirements 23

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2008 8.0.0 • Frame pointer description updated.
• Relocation table added.

October 2007 7.2.0 Maintenance release.

May 2007 7.1.0 • Added table of contents to Introduction section.
• Added Referenced Documents section.

March 2007 7.0.0 Maintenance release.

November 2006 6.1.0 Maintenance release.

May 2006 6.0.0 Maintenance release.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0 Maintenance release.

September 2004 1.1 Maintenance release.

May 2004 1.0 Initial release.

24 Document Revision History
NII51016

2015.04.02

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Application Binary Interface
	Data Types
	Memory Alignment
	Register Usage
	Stacks
	Frame Pointer Elimination
	Call Saved Registers
	Further Examples of Stacks
	Stack Frame for a Function With alloca()
	Stack Frame for a Function with Variable Arguments
	Stack Frame for a Function with Structures Passed By Value

	Function Prologues
	Prologue Variations

	Arguments and Return Values
	Arguments
	Return Values

	DWARF-2 Definition
	Object Files
	Relocation
	ABI for Linux Systems
	Linux Toolchain Relocation Information
	Copy Relocation
	Jump Slot Relocation
	Thread-Local Storage

	Linux Function Calls
	Linux Operating System Call Interface
	Linux Process Initialization
	Linux Position-Independent Code
	Linux Program Loading and Dynamic Linking
	Global Offset Table
	Function Addresses
	Procedure Linkage Table
	Linux Program Interpreter
	Linux Initialization and Termination Functions

	Linux Conventions
	System Calls
	Userspace Breakpoints
	Atomic Operations
	Processor Requirements

	Development Environment

	Document Revision History

