Altera SDK for OpenCL

Cyclone V SoC Getting Started Guide
Contents

Altera SDK for OpenCL Cyclone V SoC Getting Started Guide 1-1
- Prerequisites .. 1-2
- Contents of the Altera SDK for OpenCL .. 1-2
- Overview of the AOCL and Cyclone V SoC Development Kit Setup Processes 1-4
- Cyclone V SoC Development Kit Reference Platform Board Variants 1-5
- Design Considerations .. 1-6

Setting Up the Altera SDK for OpenCL, SoC EDS, and the Cyclone V SoC Development Kit for Windows ... 2-1
- Upgrading to Current Version of AOCL for Cyclone V SoC .. 2-2
- Downloading the Altera SDK for OpenCL .. 2-2
- Downloading the SoC EDS ... 2-3
- Installing the Altera SDK for OpenCL ... 2-3
- Setting the Environment Variables for Windows .. 2-4
- Installing the SoC EDS ... 2-5
- Licensing the Software .. 2-5
- Installing the Cyclone V SoC Development Kit ... 2-6
 - Writing an SD Card Image onto the Micro SD Flash Card on Windows 2-6
 - Configuring the SW3 Switches ... 2-7
 - Setting Up Terminal Connection in Windows ... 2-8
 - Setting Environment Variables and Loading OpenCL Linux Kernel Driver 2-8
 - Connecting the Board to Network via Ethernet .. 2-9
- Creating the Hardware Configuration File of an OpenCL Kernel for SoC 2-10
- Executing an OpenCL Kernel on an SoC ... 2-12
 - Building the Host Application ... 2-13
 - Running the Host Application .. 2-13
 - Output from Successful Kernel Execution on the Cyclone V SoC Development Kit 2-13
- Uninstalling the Software ... 2-14

Setting Up the Altera SDK for OpenCL, SoC EDS, and the Cyclone V SoC Development Kit for Linux ... 3-1
- Upgrading to Current Version of AOCL for Cyclone V SoC .. 3-2
- Downloading the Altera SDK for OpenCL .. 3-2
- Downloading the SoC EDS ... 3-3
- Installing the Altera SDK for OpenCL ... 3-3
- Setting the Environment Variables for Linux ... 3-4
- Installing the SoC EDS .. 3-5
- Licensing the Software .. 3-5
- Installing the Cyclone V SoC Development Kit ... 3-6
 - Writing an SD Card Image onto the Micro SD Flash Card on Linux 3-7
The Altera SDK for OpenCL Cyclone V SoC Getting Started Guide describes the procedures you follow to set up and use the Altera® Software Development Kit (SDK) for OpenCL™ (AOCL) (1) to run an OpenCL application on the Altera Cyclone® V SoC Development Kit.

OpenCL is a C-based open standard for the programming of heterogeneous parallel devices. The AOCL provides a compiler and tools for you to build and run OpenCL applications that target Altera FPGAs. The AOCL supports the embedded profile of the OpenCL Specification version 1.0. For more information on the OpenCL Specification version 1.0, refer to the OpenCL Reference Pages. The OpenCL Specification version 1.0 includes detailed information on the OpenCL application programming interface (API) and programming language.

This document assumes the following:

1. You are knowledgeable in OpenCL concepts and application programming interfaces (APIs), as described in the OpenCL Specification version 1.0 by the Khronos Group.
2. You have experience in creating OpenCL applications, and are familiar with the contents of the OpenCL Specification.
3. You are familiar with the information available in the following AOCL documentation:
 - Altera SDK for OpenCL Getting Started Guide.
 - Altera SDK for OpenCL Programming Guide.
 - Altera SDK for OpenCL Best Practices Guide.

Related Information

- OpenCL Reference Pages
- OpenCL Specification version 1.0
- Altera RTE for OpenCL Getting Started Guide
- Altera SDK for OpenCL Getting Started Guide
- Altera SDK for OpenCL Programming Guide
- Altera SDK for OpenCL Best Practices Guide

(1) OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of the Khronos Group™.
(2) The Altera SDK for OpenCL is based on a published Khronos Specification, and has passed the Khronos Conformance Testing Process. Current conformance status can be found at www.khronos.org/conformance.
Prerequisites

To install the Altera SDK for OpenCL (AOCL) and create an OpenCL application for the Cyclone V SoC Development Kit, your system must meet certain hardware, target platform, and software requirements.

Hardware Requirements

Ensure that your system meets the following minimum hardware and operating system (OS) requirements:

1. The accelerator board is the Altera Cyclone V SoC Development Kit.
2. Development system requirements:
 - You must have administrator privileges on the development system to install the necessary packages and drivers.
 - The development system has at least 8 gigabytes (GB) of RAM.
 - The development system must be running on one of the following supported target platforms:
 - Microsoft 64-bit Windows 7 on the x86-64 architecture.
 - Red Hat Enterprise 64-bit Linux (RHEL) versions 6 on the x86-64 architecture.

You will use the development system to perform the following tasks:

- Compile OpenCL kernel source files to create hardware configuration files.
- Cross-compile the host executables to the ARM® processor.
- Connect your system to the SoC board so that they can communicate with each other using UART over USB connection.

Software Prerequisites

- Linux systems require the Perl command version 5 or later. Ensure that your PATH environment variable setting includes the path to the Perl command.

Contents of the Altera SDK for OpenCL

The AOCL provides logic components, drivers, and AOCL-specific libraries and files.

Logic Components

- The Altera Offline Compiler (AOC) translates your OpenCL device code into a hardware configuration file that the system loads onto an Altera FPGA.
- The AOCL utility includes a set of commands you can invoke to perform high-level tasks such as running diagnostic tests.
- The host runtime provides the OpenCL host platform application programming interface (API) and runtime API for your OpenCL host application.

The host runtime consists of libraries that provide OpenCL APIs, hardware abstractions, and helper libraries.

Drivers, Libraries and Files

The software installation process installs the software into a directory that you own. The ALTERAOCLSDKROOT environment variable references the path to the software installation directory.
Table 1-1: Select Contents of the AOCL Installation Directory

<table>
<thead>
<tr>
<th>Windows Folder</th>
<th>Linux Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>bin</td>
<td>User commands in the AOCL. Include this directory in your <code>PATH</code> environment variable setting.</td>
</tr>
</tbody>
</table>
| board | board | The AOCL Custom Platform Toolkit and Reference Platforms available with the software.
- The path to the Custom Platform Toolkit is `ALTERAOCLSDKROOT/board/custom_platform_toolkit`
- The path to the Cyclone V SoC Development Kit Reference Platform, is `ALTERAOCLSDKROOT/board/c5soc` |
| ip | ip | Intellectual property (IP) cores used to compile device kernels. |
| host | host | Files necessary for compiling and running your host application. |
| host\include | host/include | OpenCL Specification version 1.0 header files and software interface files necessary for compiling and linking your host application.
The `host/include/CL` subdirectory also includes the C++ header file `cl.hpp`. The file contains an OpenCL version 1.1 C++ wrapper API. These C++ bindings enable a C++ host program to access the OpenCL runtime APIs using native C++ classes and methods.
Important: The OpenCL version 1.1 C++ bindings are compatible with OpenCL Specification versions 1.0 and 1.1. Add this path to the `include` file search path in your development environment. |
| host\windows64\lib | host/linux64/lib | OpenCL host runtime libraries that provide the OpenCL platform and runtime APIs. These libraries are necessary for linking your host application.
To run an OpenCL application on Linux, include this directory in the `LD_LIBRARY_PATH` environment variable setting. |
| host\windows64\bin | host/linux64/bin | Runtime commands and libraries necessary for running your host application, wherever applicable. For 64-bit Windows system, include this directory in your `PATH` environment variable setting.
For Windows system, this folder only contains runtime libraries.
For Linux system, this directory contains platform-specific binary for the `aocl` utility command. |
| share | share | Architecture-independent support files. |

Example OpenCL Applications

You can download example OpenCL applications from the OpenCL Design Examples page on the Altera website.
Overview of the AOCL and Cyclone V SoC Development Kit Setup Processes

The Altera SDK for OpenCL Cyclone V SoCs Getting Started Guide outlines the procedures for installing the Altera SDK for OpenCL (AOCL) and all related software. It also outlines the setup process for the Cyclone V SoC Development Kit.

Figure 1-1: Key Components of the Cyclone V SoC Development Kit

The figure below summarizes the steps for setting up the necessary software and installing the Cyclone V SoC Development Kit.
Cyclone V SoC Development Kit Reference Platform Board Variants

The Cyclone V SoC Development Kit Reference Platform (c5soc) includes two board variants.

- **OCL006-15.0.0**
- **2015.05.04**
- Altera Corporation
- **Send Feedback**
• **c5soc board**

 This default board provides access to two DDR memory banks. The hard processor system (HPS) DDR is accessible by both the FPGA and the CPU. The FPGA DDR is only accessible by the FPGA.

• **c5soc_sharedonly board**

 This board variant contains only HPS DDR connectivity. The FPGA DDR is not accessible. This board variant is more area efficient because less hardware is necessary to support one DDR memory bank. The c5soc_sharedonly board is also a good prototyping platform for a final production board with a single DDR memory bank.

 To target this board variant when compiling your OpenCL kernel, include the `--board c5soc_sharedonly` option in your `aoc` command.

 For more information on the `--board <board_name>` option of the `aoc` command, refer to the *Compiling a Kernel for a Specific FPGA Board (`--board <board_name>`)* section of the *Altera SDK for OpenCL Programming Guide*.

Related Information

Compiling a Kernel for a Specific FPGA Board (`--board <board_name>`)

Design Considerations

When designing your OpenCL kernel and host program for execution on the Cyclone V SoC Development Kit, factor in design considerations such as shared memory usage and FPGA area optimization.

Shared memory is the preferred memory for FPGA kernels. For information on how to allocate and use shared memory, refer to the *Allocating Shared Memory for OpenCL Kernels Running on SoCs* section of the *Altera SDK for OpenCL Programming Guide*.

The Cyclone V SoC FPGA on the Cyclone V SoC Development Kit is not considered a large FPGA. However, if you structure your kernel code in a way that optimizes hardware usage, it can provide sufficient hardware resources to implement complex computations. Altera recommends that you consult the *Altera SDK for OpenCL Best Practices Guide* to get a good understanding of the Altera Offline Compiler (AOC). In addition, refer to the *Strategies for Optimizing FPGA Area Usage* section of the *Altera SDK for OpenCL Best Practices Guide* for tips on area optimization.

Related Information

- *Allocating Shared Memory for OpenCL Kernels Targeting SoCs*
- *Strategies for Optimizing FPGA Area Usage*
- *Altera SDK for OpenCL Best Practices Guide*
The Altera SDK for OpenCL (AOCL) setup process includes downloading and installing the software, installing the Cyclone V SoC Development Kit, and then executing an OpenCL kernel on the SoC.

1. **Upgrading to Current Version of AOCL for Cyclone V SoC** on page 2-2
 If you have been using a previous version of the Altera SDK for OpenCL (AOCL) to program your Cyclone V SoC Development Kit, you must upgrade the software programs and files to the current version.

2. **Downloading the Altera SDK for OpenCL** on page 2-2
 Download the AOCL and all related software for Windows from the Download Center on the Altera website.

3. **Downloading the SoC EDS** on page 2-3
 Download the SoC Embedded Design Suite (EDS) for Windows from the Download Center on the Altera website.

4. **Installing the Altera SDK for OpenCL** on page 2-3
 Install the AOCL in a folder that you own.

5. **Setting the Environment Variables for Windows** on page 2-4
 Set the `PATH` user environment variable to point to Altera SDK for OpenCL (AOCL) libraries.

6. **Installing the SoC EDS** on page 2-5
 To use the Altera SDK for OpenCL to create OpenCL kernel programs that target a Cyclone V SoC, install the Altera SoC Embedded Design Suite (EDS) on your host system to develop the corresponding embedded software.

7. **Licensing the Software** on page 2-5
 Obtain the AOCL license from the Altera Self Service Licensing Center.

8. **Installing the Cyclone V SoC Development Kit** on page 2-6
 To execute an OpenCL kernel on a Cyclone V SoC, first install the Cyclone V SoC Development Kit and configure it as described in the Altera SDK for OpenCL (AOCL) documentation.

9. **Creating the Hardware Configuration File of an OpenCL Kernel for SoC** on page 2-10
 To create the `.aocx` file for the `hello_world` example OpenCL application, you must download the example design from the OpenCL Design Examples page on the Altera website. Extract the downloaded source files, and then compile the kernel using the Altera Offline Compiler (AOC).

10. **Executing an OpenCL Kernel on an SoC** on page 2-12
 Build your host application using the GNU Compiler Collection (GCC) cross-compiler available with the SoC Embedded Design Suite (EDS).
11. Uninstalling the Software on page 2-14
 To uninstall the AOCL for Windows, run the uninstaller, and restore all modified environment
 variables to their previous settings.

Upgrading to Current Version of AOCL for Cyclone V SoC

If you have been using a previous version of the Altera SDK for OpenCL (AOCL) to program your
Cyclone V SoC Development Kit, you must upgrade the software programs and files to the current
version.

The AOCL is incompatible with previous versions of the Quartus® II software.

1. Upgrade the following software to the current version:
 a. Quartus II software
 b. AOCL
 c. SoC Embedded Design Suite (EDS)

2. Reprogram the Cyclone V SoC Development Kit micro SD flash card with an image created using the
current version of the AOCL.

 For instructions on programming the micro SD flash card, refer to the Writing an SD Card Image File
 onto the Micro SD Flash Card section.

3. Recompile your host application using the current version of the AOCL.

Related Information
Writing an SD Card Image onto the Micro SD Flash Card on Windows on page 2-6

Downloading the Altera SDK for OpenCL

Download the AOCL and all related software for Windows from the Download Center on the Altera
website. Download the AOCL and all related software into a single installation package. Alternatively, if
you already have the current version of the Quartus II software in your system, download the AOCL as a
stand-alone software.

Download the following software and files:
 • Quartus II software
 • Cyclone V and Stratix® V device support files
 • AOCL
 • Altera SoC Embedded Design Suite (EDS)

1. In the main page of the Altera website, click MYALTERA and log into your account.
 If you do not have a myAltera account, register for a new account.

2. Click DOWNLOADS to enter the Download Center.

3. Click Altera SDK for OpenCL to enter the download page for the subscription edition of the AOCL.

4. Select the software version. The default selection is the current version.

5. Select the Akamai DLM3 Download Manager or Direct Download as the download method.

 By default, when you select Akamai DLM3 Download Manager, all the available software and device
 support will be selected for download. Choose this download method if you need to install all the files.
If you do not require all the files, select Direct Download and download only the files that you need. Choose this download method if you already have the current version of the Quartus II software and device support installed on your machine.

6. Click the Windows SDK tab and then click More beside Download and install instructions to view the download and installation procedure.

7. Perform the steps outlined in the download and installation instructions on the download page.

Related Information

Altera website

Downloading the SoC EDS

Download the SoC Embedded Design Suite (EDS) for Windows from the Download Center on the Altera website.

1. In the main page of the Altera website, click MYALTERA and log into your account.
 If you do not have a myAltera account, register for a new account.
2. Click DOWNLOADS to enter the Download Center.
3. Click SoC EDS to enter the download page for the subscription edition of the SoC EDS.
4. Select the software version.
5. Select Windows as the operating system.
6. Select Akamai DLM3 Download Manager or Direct Download as the download method.
7. If you select Akamai DLM3 Download Manager as the download method, click Download.
8. If you select Direct Download as the download method, click SoC Embedded Design Suite (EDS).
9. Perform the steps outlined in the download and installation instructions on the download page.

Related Information

Altera website

Installing the Altera SDK for OpenCL

If you download the AOCL, the Quartus II software, and the device support into a single installation package, run the Quartus II software installer for Windows to install all the software and files. If you download the AOCL as a stand-alone software, run the AOCL installer. Install the AOCL in a folder that you own.

Before you begin

You must have administrator privileges.
• To install the AQCL, Quartus II software, and device support files simultaneously, perform the following tasks:

1. Run the `QuartusSetup-<version>-windows.exe` file to launch the installation wizard. Perform the tasks outlined in the wizard.

2. The installer sets the user environment variable `ALTERAOCLSDKROOT` to point to the path of the software installation. To verify the `ALTERAOCLSDKROOT` setting, from the Windows main menu, click Control Panel > System and Security > System > Advanced system settings. In the System Properties pop-up window, click the Environment Variables button to open the Environment Variables pop-up window. The `ALTERAOCLSDKROOT` environment variable and its setting appears under User variables for <user_name>. Edit the value if the path does not point to the AOCL installation.

3. In the Environment Variables pop-up window, verify that the `PATH` environment variable setting includes the `bin` folder in the Quartus II system folder (for example, `<home_directory>\altera\<version>\quartus\bin`). Edit the value as needed.

• To install the AOCL as a stand-alone software, perform the following tasks:

1. Ensure that your system already has the current version of the Quartus II software and applicable device support files.

2. Ensure that the `PATH` environment variable includes the `bin` folder in the Quartus II system folder (for example, `<home_directory>\altera\<version>\quartus\bin`).

3. Run the `AOCLSetup-<version>-windows.exe` installer. Direct the installer to extract the software to an empty folder that you own (that is, not a system folder).

4. The installer sets the environment variable `ALTERAOCLSDKROOT`. Ensure that `ALTERAOCLSDKROOT` points to the current version of the software.

Setting the Environment Variables for Windows

Set the `PATH` user environment variable to point to Altera SDK for OpenCL (AOCL) libraries.

1. In the Windows Start menu, click Control Panel > System and Security > System.

2. In the System window, click Advanced system settings. In the Advanced tab of the System Properties dialog box, click Environment Variables.

3. In the Environment Variables dialog box, include the following paths in the corresponding environment variable settings:

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Path to Include</th>
</tr>
</thead>
</table>
| PATH | 1. %ALTERAOCLSDKROOT%\bin
| | 2. %ALTERAOCLSDKROOT%\host\windows64\bin

where `ALTERAOCLSDKROOT` points to the path of the software installation.
Installing the SoC EDS

To use the Altera SDK for OpenCL to create OpenCL kernel programs that target a Cyclone V SoC, install the Altera SoC Embedded Design Suite (EDS) on your host system to develop the corresponding embedded software.

 For more information on the ARM DS-5 Altera Edition Toolkit, refer to the ARM DS-5 Altera Edition page of the ARM website.

Related Information
- Installing the SoC EDS
- Installing the ARM DS-5 Altera Edition Toolkit
- ARM DS-5 Altera Edition page on the ARM website
- SoC EDS Licensing

Licensing the Software

Obtain the AOCL license from the Altera Self Service Licensing Center. The AOCL license allows the software to access relevant Quartus II software functionalities and device support without an additional Quartus II software license.

Before you begin

For information on the licensing options and requirements, refer to the Licensing Altera Software section of the Altera Software Installation and Licensing manual, the `LICENSE.txt` file that accompanies each software, and the Altera Licensing page within the Altera website.

1. In the main page within the Altera website, click MYALTERA and log into your account.
2. Click the link to the Self-Service Licensing Center.
3. Perform the steps outlined in the Requesting a License from the Self-Service Licensing Center section of the Altera Software Installation and Licensing manual to obtain and activate the license.

 You must obtain a separate license for the SoC Embedded Design Suite (EDS).

4. If you have a fixed license, append the `<path_to_license_file>/<license_filename>` file to the `LM_LICENSE_FILE` environment variable in the following manner:
a. Create a backup copy of the provided license file.
b. Save the new license file on your local hard drive.
c. Append the `<path_to_license_file>/license_filename>` file to the `LM_LICENSE_FILE` environment variable.

5. If you have a floating licence, append the `<path_to_license_file>/license_filename>` file to the `LM_LICENSE_FILE` environment variable in the following manner:

a. Obtain the port number and host name from the network or system administrator. Alternatively, the information is in the license file line `SERVER <hostname> <8 to 12 character host or NIC ID> <port>`. The license location for the user is `<port>@<hostname>`. If a port is not listed in the license file, specify `@<hostname>`.
b. Modify the license file to update the port number and host name.
c. Append the `<path_to_license_file>/license_filename>` file to the `LM_LICENSE_FILE` environment variable.

Related Information
- Altera Licensing page on the Altera website
- Altera Software Installation and Licensing
- Altera website

Installing the Cyclone V SoC Development Kit

To execute an OpenCL kernel on a Cyclone V SoC, first install the Cyclone V SoC Development Kit and configure it as described in the Altera SDK for OpenCL (AOCL) documentation.

1. **Writing an SD Card Image onto the Micro SD Flash Card on Windows** on page 2-6
 To write an SD card image onto the micro SD flash card on Windows, download and install the Win32 Disk Imager, and then write the SD card image onto the micro SD flash card.

2. **Configuring the SW3 Switches** on page 2-7
 Configure the SW3 dual in-line package (DIP) switches on the Cyclone V SoC Development Kit.

3. **Setting Up Terminal Connection in Windows** on page 2-8
 To set up the terminal connection for the Cyclone V SoC Development Kit in Windows, specify the USB virtual COM port settings.

4. **Setting Environment Variables and Loading OpenCL Linux Kernel Driver** on page 2-8
 After you turn on the board and establish terminal connection, log into the Cyclone V SoC Development Kit as user `root` with no password. Then, before you run your host application, set the environment variables and load the OpenCL Linux kernel driver.

5. **Connecting the Board to Network via Ethernet** on page 2-9
 Connecting the Cyclone V SoC Development Kit to the host network allows you to transfer files to and from your SoC.

Writing an SD Card Image onto the Micro SD Flash Card on Windows

The Altera SDK for OpenCL (AOCL) includes a Cyclone V SoC Development Kit Reference Platform. To write an SD card image onto the micro SD flash card on Windows, download and install the Win32 Disk
Imager, and then write the SD card image onto the micro SD flash card. The SD card image contains everything you need to start using OpenCL on the board.

Before you begin

The SD card image `linux_sd_card_image.tgz` is available in the Cyclone V SoC Development Kit Reference Platform. Ensure that the environment variable `AOCL_BOARD_PACKAGE_ROOT` points to the location of the `board_env.xml` file in the Reference Platform.

You must have administrator privileges.

1. Extract the files from the `%ALTERAOCLSDKROOT%\board\c5soc\linux_sd_card_image.tgz` archive. You can use tools such as 7zip or WinZip to extract the SD card image file from the .tgz archive.
2. Download the Win32 Disk Imager from the SourceForge website.
3. Unzip the Win32 Disk Imager and the SD card image to a directory that you own.
4. Insert the micro SD card into the card reader and connect it to your PC.
5. Launch the Win32 Disk Imager. In the dialog box, under **Image File**, browse to the SD card image file.
6. From the **Device** pull-down menu, select the destination drive of the micro SD card.

 Warning: Specifying the wrong device name might cause the SD card image to overwrite all existing data.

7. Click **Write**.
8. After you write the image onto the micro SD flash card, insert the card into the micro SD card slot on the Cyclone V SoC Development Kit.
9. Power up the board.

 If the LEDs on the FPGA flash in a counter pattern, the image is written onto the micro SD card successfully. A section of OpenCL logic on the FPGA drives these LEDs.

Related Information

Altera Cyclone V SoC Development Kit Reference Platform Porting Guide

Configuring the SW3 Switches

Configure the SW3 dual in-line package (DIP) switches on the Cyclone V SoC Development Kit. The switch bank is located next to the SD card slot.

1. Set the SW3 DIP switches to the following positions:

<table>
<thead>
<tr>
<th>Switch</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
</tr>
<tr>
<td>4</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>ON</td>
</tr>
<tr>
<td>6</td>
<td>ON</td>
</tr>
</tbody>
</table>

The figure below illustrates the physical configuration of the SW switches on the Cyclone V SoC Development Kit:
Setting Up Terminal Connection in Windows

To set up the terminal connection for the Cyclone V SoC Development Kit in Windows, specify the USB virtual COM port settings.

1. Connect the board to your development machine via the micro-USB port that is closest to the power supply connector on the board.
2. Connect the board to the power supply and power it up.
3. Download the Virtual COM port (VCP) driver from the VCP driver download page on the Future Technology Devices International (FTDI) Ltd. website.
4. Determine the COM port in use.
 a. From the Windows Start menu, click Control Panel > Hardware and Sound.
 b. Under Devices and Printers, click Device Manager.
 c. In the Device Manager window, under Ports, click USB Serial Port (COM<X>).
5. Connect either the Tera Term or PuTTY open-source terminal emulator to the COM port that the FDTI driver creates.
6. Set the port settings to 115200, 8N1, with parity and control flow set to none.
7. For Tera Term, select Setup > Terminal, and then change Code Page to 1250.
8. Without powering down, restart the board.

Setting Environment Variables and Loading OpenCL Linux Kernel Driver

After you turn on the board and establish terminal connection, log into the Cyclone V SoC Development Kit as user root with no password. Then, before you run your host application, set the environment variables and load the OpenCL Linux kernel driver.

1. After logging into the SoC board, run the source ./init_opencl.sh command, which performs the following tasks:
 a. Set the PATH, LD_LIBRARY_PATH, and AOCL_BOARD_PACKAGE_ROOT environment variables.
 b. Load the OpenCL Linux kernel driver.
The `init_opencl.sh` file is available in the SD card image that you write onto the micro SD flash card. It contains the commands shown below:

```bash
export ALTERAOCLSDKROOT=<aocl_destination_directory>
export AOCL_BOARD_PACKAGE_ROOT=$ALTERAOCLSDKROOT/board/c5soc
export PATH=$ALTERAOCLSDKROOT/bin:$PATH
export LD_LIBRARY_PATH=$ALTERAOCLSDKROOT/host/arm32/lib:$LD_LIBRARY_PATH
insmod $AOCL_BOARD_PACKAGE_ROOT/driver/aclsoc_drv.ko
```

Connecting the Board to Network via Ethernet

Connecting the Cyclone V SoC Development Kit to the host network allows you to transfer files to and from your SoC.

1. Connect the hard processor system (HPS) Ethernet port of the board to your network.
2. Reboot the board.

 The board acquires an IP address, allowing you to initiate a Secure Shell (SSH) connection and runs a Secure Copy (SCP) program to login and transfer files.

Alternatively, you can mount a network drive to your board and access the files directly.

Ensuring IP Address Acquisition

After you connect the hard processor system (HPS) Ethernet port on the Cyclone V SoC Development Kit to your network and reboot the board, ensure that the board acquires an IP address successfully.

Before you begin

After you connect the HPS Ethernet port to your network and power up your board, you should see a solid orange light and a blinking green light. If not, check the connection of the Ethernet cable to the Ethernet port on your network.

1. To check if your board has an IP address, search for the IP address in boot messages such as the one shown below:

   ```
   Sending discover...
   libphy: stmmac-0:04 - Link is Up - 1000/Full
   Sending discover...
   Sending select for 137.57.175.148...
   Lease of 137.57.175.148 obtained, lease time 86400
   /etc/udhcpc.d/50default: Adding DNS 137.57.142.218
   /etc/udhcpc.d/50default: Adding DNS 137.57.109.10
   /etc/udhcpc.d/50default: Adding DNS 137.57.64.1
   done.
   ```

 The message **Lease of `<board_IP_address>` obtained, lease time 86400** identifies the IP address of the board.

2. If you receive the following output, perform a warm reboot of the board by pressing the WARM button next to the LED lights.

   ```
   Sending discover...
   libphy: stmmac-0:04 - Link is Up - 1000/Full
   Sending discover...
   Sending discover...
   Sending discover...
   No lease, failing
   ```

 The board uses the dynamic host configuration protocol (DHCP) to acquire an IP address. If the session times out waiting for an IP assignment, reboot the CPU to restart the IP acquisition process.
To reboot the CPU, press the Warm reset button next to the four hard processor system (HPS) LEDs on the board.

3. If you are unable to acquire the IP address, ensure that the Ethernet cable is in good working condition and the Ethernet port on your network is enabled.

Using SSH and SCP

Instead of connecting the Cyclone V SoC Development Kit to the host system using UART over USB and transferring files using a network drive, you can initiate a Secure Shell (SSH) connection and transfer files using a Secure Copy (SCP) program.

1. To establish a connection between the Cyclone V SoC Development Kit and the host system via SSH, invoke the `ssh root@<board_ip_address>` command from your development machine.

 For instructions on how to identify `<board_ip_address>`, refer to the Ensuring IP Address Acquisition section.

2. To transfer files, one at a time, from the host system to the board via SCP, invoke the `scp <source_filename> root@<board_ip_address>:<target_filename>` command from your development machine.

Related Information

Ensuring IP Address Acquisition on page 2-9

Creating the Hardware Configuration File of an OpenCL Kernel for SoC

The hardware configuration file of an OpenCL kernel is called an Altera Offline Compiler Executable file (.aocx). To create the .aocx file for the hello_world example OpenCL application, you must download the example design from the OpenCL Design Examples page on the Altera website. Extract the downloaded source files, and then compile the kernel using the Altera Offline Compiler (AOC).

After you successfully install your FPGA board, you can create a .aocx file that executes on the device. The steps below describe the process of creating a .aocx file from the hello_world example design. For more information on the OpenCL design examples, refer to the OpenCL Design Examples page on the Altera website.

Important: Before you program your Cyclone V SoC with the hardware image, ensure that your SoC contains an image created using the current version of the AOCL.

The figure below summarizes the steps you perform to program your Cyclone V SoC.
1. Download the SoC-specific hello_world example OpenCL application from the OpenCL Design Examples page on the Altera website.

2. Extract the hello_world example (exm_opencl_hello_world_x32_linux_<version>) to a location to which you have write access.

3. Ensure that you set the environment variable `AOCL_BOARD_PACKAGE_ROOT` to point to the Cyclone V SoC Development Kit Reference Platform (that is, `ALTERAOCLSDKROOT/board/c5soc`).

4. At a command prompt, navigate to the hello_world design.

5. To list the SoC boards available in the Cyclone V SoC Development Kit Reference Platform, invoke the `aoc --list-boards` command.
You should see an output similar to the one below:

```
Board list:
c5soc
c5soc_sharedonly
```

6. To compile the kernel for your Cyclone V SoC Development Kit, invoke the following command:

```
aoc --board c5soc device/hello_world.cl -o bin/hello_world.aocx
```

This command performs the following tasks:

- Generates the Quartus II design project files from the OpenCL source code.
- Checks for initial syntax errors.
- Performs basic optimizations.
- Creates a `hello_world` subfolder or subdirectory containing necessary intermediate files.
- Creates the *Altera Offline Compiler Object file* (.aoc).
- Creates the .aocx hardware configuration file and saves it in the `bin` subfolder or subdirectory.

Attention: The .aocx file might take hours to build, depending on the complexity of the kernel. To view the progress of the compilation on-screen, include the `-v` flag in your `aoc` command (that is, `aoc -v <your_kernel_filename>.cl`).

The AOC displays the line `aoc: Hardware generation completed successfully.` to signify the completion of the compilation process.

For more information on the `--list-boards` option of the `aoc` command, refer to the *Listing the Available FPGA Boards in Your Custom Platform (--list-boards)* section of the *Altera SDK for OpenCL Programming Guide*.

For more information on the `--board <board_name>` option of the `aoc` command, refer to the *Compiling a Kernel for a Specific FPGA Board (--board <board_name>)* section of the *Altera SDK for OpenCL Programming Guide*.

For more information on the `-v` option of the `aoc` command, refer to the *Generating Compilation Progress Report (-v)* section of the *Altera SDK for OpenCL Programming Guide*.

For more information on the `-o <filename>` option of the `aoc` command, refer to the *Specifying the Name of an AOC Output File (-o <filename>)* section of the *Altera SDK for OpenCL Programming Guide*.

Related Information

- OpenCL Design Examples page on the Altera website
- Listing the Available FPGA Boards in Your Custom Platform (--list-boards)
- Compiling a Kernel for a Specific FPGA Board (--board <board_name>)
- Generating Compilation Progress Report (-v)
- Specifying the Name of an AOC Output File (-o <filename>)

Executing an OpenCL Kernel on an SoC

Build your host application using the GNU Compiler Collection (GCC) cross-compiler available with the SoC Embedded Design Suite (EDS).

Related Information

Creating the Hardware Configuration File of an OpenCL Kernel for SoC on page 2-10
Building the Host Application

Build your SoC-specific OpenCL host application using the GNU Compiler Collection (GCC) cross-complier available with the SoC Embedded Design Suite (EDS).

1. Perform the following tasks to download the hello_world design example.
 a. Download the SoC-specific hello_world design example (<version> Arm32 Linux package (.tgz)) from the Hello World Design Example page within the Altera website.
 b. Extract `exm_opencl_hello_world_arm32_linux.<version>.tar` to a location to which you have write access.
 c. Ensure that you set the environment variable `AOCL_BOARD_PACKAGE_ROOT` to point to the Cyclone V SoC Development Kit Reference Platform (that is, `%ALTERAOCLSDKROOT%\board\c5soc`).

2. At a command prompt, invoke the following command to set the `PATH` environment variable:
 `SET PATH=%PATH%;<path_to_SoCEDS_installation_dir>\ds-5\sw\gcc\bin`

3. Navigate to the `<path_to_exm_opencl_hello_world_arm32_linux.<version>>\hello_world` directory.

4. Invoke the `make -f Makefile` command. Alternatively, you can simply invoke the `make` command.
 The hello_world executable will be in the `<path_to_exm_opencl_hello_world_arm32_linux.<version>>\hello_world\bin` directory.

Running the Host Application

To execute the `hello_world.aocx` Altera Offline Compiler Executable file on the SoC, run the host application you built from the ARM-specific `Makefile`.

1. Log into your SoC board.

2. Copy the `hello_world.aocx` hardware configuration file and the hello_world host executable from the `<exm_opencl_hello_world_arm32_linux.<version>>\hello_world\bin` to the board.

3. Ensure that the `LD_LIBRARY_PATH` environment variable includes the `$%ALTERAOCLSDKROOT%\host\arm32\lib`.

4. To execute the kernel on the SoC, at a command prompt, navigate to the host executable directory and run the hello_world host executable.

Output from Successful Kernel Execution on the Cyclone V SoC Development Kit

When you run the host application to execute your OpenCL kernel on the Cyclone V SoC Development Kit, the software notifies you of a successful kernel execution.

Example output:

```
Found 1 OpenCL platforms.
Querying platform for info:
-------------------------------
CL_PLATFORM_NAME             = Altera SDK for OpenCL
CL_PLATFORM_VENDOR          = Altera Corporation
CL_PLATFORM_VERSION         = OpenCL 1.0 Altera SDK for OpenCL, Version <version>

Querying device for info:
-------------------------------
CL_DEVICE_NAME              = c5soc : Cyclone V SoC Development Kit
```

Send Feedback
Uninstalling the Software

To uninstall the AOCL for Windows, run the uninstaller, and restore all modified environment variables to their previous settings.

1. From the Windows Start Menu shortcut, navigate to the Altera <version>\Altera SDK for OpenCL <version> (64-bit) folder.
2. Run Uninstall Altera SDK for OpenCL <version>.
3. Remove the following paths from the PATH environment variable:
 a. %ALTERAOCLSDKROOT%\bin
 b. %ALTERAOCLSDKROOT%\host\windows64\bin
4. Remove the ALTERAOCLSDKROOT environment variable.
The Altera SDK for OpenCL (AOCL) setup process includes downloading and installing the software, installing the Cyclone V SoC Development Kit, and then executing an OpenCL kernel on the SoC.

1. **Upgrading to Current Version of AOCL for Cyclone V SoC** on page 3-2
 If you have been using a previous version of the Altera SDK for OpenCL (AOCL) to program your Cyclone V SoC Development Kit, you must upgrade the software programs and files to the current version.

2. **Downloading the Altera SDK for OpenCL** on page 3-2
 Download the AOCL and all related software for Linux from the Download Center on the Altera website.

3. **Downloading the SoC EDS** on page 3-3
 Download the SoC Embedded Design Suite (EDS) for Linux from the Download Center on the Altera website.

4. **Installing the Altera SDK for OpenCL** on page 3-3
 Install the AOCL in a directory that you own.

5. **Setting the Environment Variables for Linux** on page 3-4
 Set the `PATH` and `LD_LIBRARY_PATH` user environment variables to point to the Altera SDK for OpenCL (AOCL) and board libraries.

6. **Installing the SoC EDS** on page 3-5
 To use the Altera Software Development Kit (SDK) for OpenCL to create OpenCL kernel programs that target a Cyclone V SoC, you must install the Altera SoC Embedded Design Suite (EDS) on your host system to develop the corresponding embedded software.

7. **Licensing the Software** on page 3-5
 Obtain the AOCL license from the Altera Self Service Licensing Center.

8. **Installing the Cyclone V SoC Development Kit** on page 3-6
 To execute an OpenCL kernel on a Cyclone V SoC, first install the Cyclone V SoC Development Kit and configure it as described in the Altera SDK for OpenCL (AOCL) documentation.

9. **Creating the Hardware Configuration File of an OpenCL Kernel for SoC** on page 3-11
 To create the `.aocx` file for the `hello_world` example OpenCL application, you must download the example design from the OpenCL Design Examples page on the Altera website. Extract the downloaded source files, and then compile the kernel using the Altera Offline Compiler (AOC).

10. **Executing an OpenCL Kernel on an SoC** on page 3-13
 Build your host application using the GNU Compiler Collection (GCC) cross-compiler available with the SoC Embedded Design Suite (EDS).
Uninstalling the Software

To uninstall the AOCL for Linux, remove the software package via the Red Hat Package Manager (RPM) or GUI uninstaller, then delete the software directory and restore all modified environment variables to their previous settings.

Upgrading to Current Version of AOCL for Cyclone V SoC

If you have been using a previous version of the Altera SDK for OpenCL (AOCL) to program your Cyclone V SoC Development Kit, you must upgrade the software programs and files to the current version.

The AOCL is incompatible with previous versions of the Quartus II software.

1. Upgrade the following software to the current version:
 a. Quartus II software
 b. AOCL
 c. SoC Embedded Design Suite (EDS)

2. Reprogram the Cyclone V SoC Development Kit micro SD flash card with an image created using the current version of the AOCL.

 For instructions on programming the micro SD flash card, refer to the Writing an SD Card Image File onto the Micro SD Flash Card section.

3. Recompile your host application using the current version of the AOCL.

Related Information

Writing an SD Card Image onto the Micro SD Flash Card on Linux on page 3-7

Downloading the Altera SDK for OpenCL

Download the AOCL and all related software for Linux from the Download Center on the Altera website. Download the AOCL and all related software into a single installation package. Alternatively, if you already have the current version of the Quartus II software in your system, download the AOCL as a stand-alone software.

Download the following software and files:
- Quartus II software
- Cyclone V and Stratix V device support files
- AOCL
- Altera SoC Embedded Design Suite (EDS)

1. In the main page of the Altera website, click MYALTERA and log into your account.

 If you do not have a myAltera account, register for a new account.

2. Click DOWNLOADS to enter the Download Center.

3. Click Altera SDK for OpenCL to enter the download page for the subscription edition of the AOCL.

4. Select the software version. The default selection is the current version.
5. Select Direct Download as the download method.
6. Click the Linux SDK tab and then click More beside Download and install instructions to view the download and installation procedure.
7. Perform the steps outlined in the download and installation instructions on the download page.

Related Information
Altera website

Downloading the SoC EDS

Download the SoC Embedded Design Suite (EDS) for Linux from the Download Center on the Altera website.

1. In the main page of the Altera website, click MYALTERA and log into your account.
 If you do not have a myAltera account, register for a new account.
2. Click DOWNLOADS to enter the Download Center.
3. Click SoC EDS to enter the download page for the subscription edition of the SoC EDS.
4. Select the software version.
5. Select Linux as the operating system.
6. Select Direct Download as the download method.
7. Click SoC Embedded Design Suite (EDS).
 Download will begin immediately.
8. Perform the steps outlined in the download and installation instructions on the download page.

Related Information
Altera website

Installing the Altera SDK for OpenCL

If you download the AOCL, the Quartus II software, and the device support into a single installation package, run the Quartus II software installer for Linux to install all the software and files. If you download the AOCL as a stand-alone software, run the AOCL installer. Install the AOCL in a directory that you own.

Before you begin

1. You must have sudo or root privileges.
2. You must install the Linux OS kernel source and headers (for example, kernel-devel.x86_64 and kernel-headers.x86_64), and the GNU Compiler Collection (GCC) (gcc.x86_64).

Attention: If you install the software on a system that does not contain any C Shell Run Commands file (.cshrc) or Bash Run Commands file (.bashrc) in your directory, you must set the environment variables ALTERAOCLSDKROOT and PATH manually. Alternatively, you may create the .cshrc and .bashrc files, and then append the environment variables to them. To ensure that the updates take effect, restart your terminal after you set the environment variables.
• To install the AOCL, Quartus II software, and device support files simultaneously, perform the following tasks:

1. Run the `QuartusSetup-<version>-linux.run` installer, and follow the installation instructions in the *Altera Software Installation and Licensing* manual.
2. The installer sets the environment variable `ALTERAOCLSDKROOT` to point to the path of the software installation. Ensure that `ALTERAOCLSDKROOT` points to the current version of the software.
3. Ensure that the `PATH` environment variable includes the `bin` directory in the Quartus II system directory (for example, `<home_directory>/altera/<version>/quartus/bin`).

• To install the AOCL as a stand-alone software, perform the following tasks:

1. Ensure that your system already has the current version of the Quartus II software and applicable device support files.
2. Ensure that the `PATH` environment variable includes the `bin` directory in the Quartus II system folder (for example, `<home_directory>/altera/<version>/quartus/bin`).
3. To install the software using the Red Hat Package Manager (RPM), at the command prompt, invoke one of the following commands:
 - At a command prompt, type `rpm -i aocl-sdk-<version>.x86_64.rpm` to install the software in the default location (for example, `opt/altera/aocl-sdk`).
 - To install the software in the default location with verbose progress reporting, type `rpm -ivh aocl-sdk-<version>.x86_64.rpm`
 - To install the software in an alternate directory that you own (that is, not a system directory), type the `rpm -i --prefix <aocl_destination_directory> aocl-sdk-<version>.x86_64.rpm` command.
4. To install the software using the GUI installer, run the `AOCLSetup-<version>-linux.run` installer. Direct the installer to extract the software to an empty folder that you own (that is, not a system directory). The installation path must not contain any spaces (for example, `usr/altera/<version>/hld`).
5. The installer sets the environment variable `ALTERAOCLSDKROOT` to the path of the software installation. Ensure that `ALTERAOCLSDKROOT` points to the current version of the software.

Related Information

Altera Software Installation and Licensing

Setting the Environment Variables for Linux

Set the `PATH` and `LD_LIBRARY_PATH` user environment variables to point to the Altera SDK for OpenCL (AOCL) and board libraries.

Before you begin

Attention: If you install the software on a system that does not contain any C Shell Run Commands file (`.cshrc`) or Bash Run Commands file (`.bashrc`) in your directory, you must set the environment variables `ALTERAOCLSDKROOT` and `PATH` manually. Alternatively, you may create the `.cshrc` and `.bashrc` files, and then append the environment variables to them. To ensure that the updates take effect, restart your terminal after you set the environment variables.
1. At a command prompt, type `export PATH=$ALTERAOCLSDKROOT/bin:$PATH` to add the path to the AOCL bin directory to PATH, where ALTERAOCLSDKROOT points to the path to the software installation.

2. At a command prompt, specify the following environment variable settings:
 a. Invoke the `export LD_LIBRARY_PATH=$ALTERAOCLSDKROOT/host/linux64/lib:$LD_LIBRARY_PATH` command to add the path to the AOCL host runtime libraries to LD_LIBRARY_PATH.
 b. Invoke the `export LD_LIBRARY_PATH=$AOCL_BOARD_PACKAGE_ROOT/linu64/lib:$LD_LIBRARY_PATH` command to add the path to the board libraries to LD_LIBRARY_PATH, where AOCL_BOARD_PACKAGE_ROOT points to the path to the Custom or Reference Platform.

Installing the SoC EDS

To use the Altera Software Development Kit (SDK) for OpenCL to create OpenCL kernel programs that target a Cyclone V SoC, you must install the Altera SoC Embedded Design Suite (EDS) on your host system to develop the corresponding embedded software.

The GNU Compiler Collection (GCC) tool chain is part of the SoC EDS installation package.

 For more information on the ARM DS-5 Altera Edition Toolkit, refer to the ARM DS-5 Altera Edition page of the ARM website.

Related Information

- Installing the SoC EDS
- Installing the ARM DS-5 Altera Edition Toolkit
- ARM DS-5 Altera Edition page on the ARM website
- SoC EDS Licensing

Licensing the Software

Obtain the AOCL license from the Altera Self Service Licensing Center. The AOCL license allows the software to access relevant Quartus II software functionalities and device support without an additional Quartus II software license.

Before you begin

For information on the licensing options and requirements, refer to the Licensing Altera Software section of the Altera Software Installation and Licensing manual, the LICENSE.txt file that accompanies each software, and the Altera Licensing page within the Altera website.
1. In the main page within the Altera website, click MYALTERA and log into your account.
2. Click the link to the Self-Service Licensing Center.
3. Perform the steps outlined in the Requesting a License from the Self-Service Licensing Center section of the Altera Software Installation and Licensing manual to obtain and activate the license.
 You must obtain a separate license for the SoC Embedded Design Suite (EDS).
4. If you have a fixed license, append the `<path_to_license_file>/license_filename>` file to the `LM_LICENSE_FILE` environment variable in the following manner:
 a. Create a backup copy of the provided license file.
 b. Save the new license file on your local hard drive.
 c. Append the `<path_to_license_file>/license_filename>` file to the `LM_LICENSE_FILE` environment variable.
5. If you have a floating licence, append the `<path_to_license_file>/license_filename>` file to the `LM_LICENSE_FILE` environment variable in the following manner:
 a. Obtain the port number and host name from the network or system administrator. Alternatively, the information is in the license file line `SERVER <hostname> <8 to 12 character host or NIC ID> <port>`. The license location for the user is `<port>@<hostname>`. If a port is not listed in the license file, specify `@<hostname>`.
 b. Modify the license file to update the port number and host name.
 c. Append the `<path_to_license_file>/license_filename>` file to the `LM_LICENSE_FILE` environment variable.

Related Information

- Altera Licensing page on the Altera website
- Altera Software Installation and Licensing
- Altera website

Installing the Cyclone V SoC Development Kit

To execute an OpenCL kernel on a Cyclone V SoC, first install the Cyclone V SoC Development Kit and configure it as described in the Altera SDK for OpenCL (AOCL) documentation.

1. **Writing an SD Card Image onto the Micro SD Flash Card on Linux**
 To write an SD card image onto the micro SD flash card on Linux, extract the SD card image from the Cyclone V SoC Development Kit Reference Platform, and then write the image onto the micro SD flash card.
2. **Configuring the SW3 Switches**
 Configure the SW3 dual in-line package (DIP) switches on the Cyclone V SoC Development Kit.
3. **Setting Up Terminal Connection in Linux**
 To set up the terminal connection for the Cyclone V SoC Development Kit in Linux, specify the USB virtual COM port settings.
4. **Setting Environment Variables and Loading OpenCL Linux Kernel Driver**
 After you turn on the board and establish terminal connection, log into the Cyclone V SoC Development Kit as user `root` with no password. Then, before you run your host application, set the environment variables and load the OpenCL Linux kernel driver.
5. **Connecting the Board to Network via Ethernet** on page 3-9
 Connecting the Cyclone V SoC Development Kit to the host network allows you to transfer files to and from your SoC.

Writing an SD Card Image onto the Micro SD Flash Card on Linux

The Altera SDK for OpenCL (AOCL) includes a Cyclone V SoC Development Kit Reference Platform. To write an SD card image onto the micro SD flash card on Linux, extract the SD card image from the Cyclone V SoC Development Kit Reference Platform, and then write the image onto the micro SD flash card. The SD card image contains everything you need to start using OpenCL on the board.

Before you begin

The SD card image `linux_sd_card_image.tgz` is available in the Cyclone V SoC Development Kit Reference Platform. Ensure that the environment variable `AOCL_BOARD_PACKAGE_ROOT` points to the location of the `board_env.xml` file in the Reference Platform.

You must have sudo or root privileges.

1. To decompress the $ALTERAOCLSDKROOT/board/c5soc/linux_sd_card_image.tgz file, run the `tar xvfz linux_sd_card_image.tgz` command.
2. Insert the micro SD flash card into a card reader, and connect the reader to your PC.
 a. If the flash card already contains an image, partitions will exist automatically in the micro SD card. Unmount or eject all these partitions.
3. Run the `dmesg | tail` command to verify the device name of the flash card (for example, `/dev/sde`).
4. Write the SD card image onto the micro SD flash card by running the following commands:
   ```
   sudo dd if=linux_sd_card_image of=/dev/sde bs=1M sync
   ```
 Attention: If the device name of your micro SD flash card is not `/dev/sde`, replace `/dev/sde` in the above command with the device name you obtain from Step 3.

 Warning: Specifying the wrong device name might cause the SD card image to overwrite all existing data.
5. After you write the image onto the micro SD flash card, insert the card into the micro SD card slot on the Cyclone V SoC Development Kit.

Related Information

Altera Cyclone V SoC Development Kit Reference Platform Porting Guide

Configuring the SW3 Switches

Configure the SW3 dual in-line package (DIP) switches on the Cyclone V SoC Development Kit. The switch bank is located next to the SD card slot.

1. Set the SW3 DIP switches to the following positions:

<table>
<thead>
<tr>
<th>Switch</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Setting Up Terminal Connection in Linux

To set up the terminal connection for the Cyclone V SoC Development Kit in Linux, specify the USB virtual COM port settings.

1. Connect the board to your development machine via the micro-USB port that is closest to the power supply connector on the board.
2. Connect the board to the power supply and power it up.
3. Run the command `dmesg | tail` to determine which device the Future Technology Devices International (FTDI) driver assigns for the connection (e.g. `/dev/ttyUSB0`).
4. Setup the minicom as follows:
 a. Ensure that minicom is installed on your system. If not, invoke the `yum install minicom` command.
 b. Run `minicom -s` as root to enter the minicom setup mode.
 c. Select `Serial port setup` and then press Enter.
 d. Press A to change `Serial Device` to `/dev/ttyUSB0` and then press Enter.
 e. Press E to change the port settings. Press E again to select 115200 for Speed, and then press Q to set `Data/Parity/Stopbits` to 8-N-1 configuration.
f. Press Enter twice to return to the main minicom setup menu.

g. Select `Save setup as dfl` and then press Enter to save the minicom settings as defaults.

h. Select `Exit`.

5. Without powering down, restart the board.
 You should see Linux boot messages appear on the terminal command of your choice.

Setting Environment Variables and Loading OpenCL Linux Kernel Driver

After you turn on the board and establish terminal connection, log into the Cyclone V SoC Development Kit as user `root` with no password. Then, before you run your host application, set the environment variables and load the OpenCL Linux kernel driver.

1. After logging into the SoC board, run the `source ./init_opencl.sh` command, which performs the following tasks:
 a. Set the `PATH`, `LD_LIBRARY_PATH`, and `AOCL_BOARD_PACKAGE_ROOT` environment variables.
 b. Load the OpenCL Linux kernel driver.

The `init_opencl.sh` file is available in the SD card image that you write onto the micro SD flash card. It contains the commands shown below:

```bash
export ALTERAOCLSDKROOT=<aocl_destination_directory>
export AOCL_BOARD_PACKAGE_ROOT=$ALTERAOCLSDKROOT/board/c5soc
export PATH=$ALTERAOCLSDKROOT/bin:$PATH
export LD_LIBRARY_PATH=$ALTERAOCLSDKROOT/host/arm32/lib:$LD_LIBRARY_PATH
insmod $AOCL_BOARD_PACKAGE_ROOT/driver/aclsoc_drv.ko
```

Connecting the Board to Network via Ethernet

Connecting the Cyclone V SoC Development Kit to the host network allows you to transfer files to and from your SoC.

1. Connect the hard processor system (HPS) Ethernet port of the board to your network.
2. Reboot the board.
 The boards acquires an IP address, allowing you to initiate a Secure Shell (SSH) connection and runs a Secure Copy (SCP) program to login and transfer files.

 Alternatively, you can mount a network drive to your board and access the files directly.

Ensuring IP Address Acquisition

After you connect the hard processor system (HPS) Ethernet port on the Cyclone V SoC Development Kit to your network and reboot the board, ensure that the board acquires an IP address successfully.

Before you begin

After you connect the HPS Ethernet port to your network and power up your board, you should see a solid orange light and a blinking green light. If not, check the connection of the Ethernet cable to the Ethernet port on your network.

1. To check if your board has an IP address, search for the IP address in boot messages such as the one shown below:

   ```
   Sending discover...
   libphy: stmmac-0:04 - Link is Up - 1000/Full
   Sending discover...
   ```
Mounting a Shared Drive

The most convenient way to share files between a development PC and the Cyclone V SoC development board is to mount a network drive.

1. Check the `/etc/fstab` file systems table file on your development PC for the line that describes the mounting of the drive you want to use on the board.
 The following example `/etc/fstab` entry indicates that the `/data` folder on the my_nas server is mounted to the `/data` folder on the development PC:

   ```
   my_nas:/data /data nfs
   exec,dev,suid,rw,tcp,hard,intr,vers=3,rsize=32768,wsize=32768,timeo=600,retrans=200
   ```

2. Add the `/etc/fstab` entry described above to the `/etc/fstab` file on the Cyclone V SoC development board.

3. Run the `sync` command to save the `/etc/fstab` file to the SD flash card.

4. Create an empty folder on the board that serves as the mounting point for the network drive.
 For example: type `mkdir /data`, where `/data` is the name of the folder.

5. Invoke the `busybox mount -a` command.
 If the mounting operation fails, rerun the command.

Using SSH and SCP

Instead of connecting the Cyclone V SoC Development Kit to the host system using UART over USB and transferring files using a network drive, you can initiate a Secure Shell (SSH) connection and transfer files using a Secure Copy (SCP) program.

1. To establish a connection between the Cyclone V SoC Development Kit and the host system via SSH, invoke the `ssh root@<board_ip_address>` command from your development machine.
For instructions on how to identify `<board_ip_address>`, refer to the *Ensuring IP Address Acquisition* section.

2. To transfer files, one at a time, from the host system to the board via SCP, invoke the `scp`
 `<source_filename>` root@`<board_ip_address>`:`<target_filename>` command
 from your development machine.

Related Information

Ensuring IP Address Acquisition on page 3-9

Creating the Hardware Configuration File of an OpenCL Kernel for SoC

The hardware configuration file of an OpenCL kernel is called an *Altera Offline Compiler Executable file* (.aocx). To create the .aocx file for the *hello_world* example OpenCL application, you must download the example design from the OpenCL Design Examples page on the Altera website. Extract the downloaded source files, and then compile the kernel using the Altera Offline Compiler (AOC).

After you successfully install your FPGA board, you can create a .aocx file that executes on the device. The steps below describe the process of creating a .aocx file from the hello_world example design. For more information on the OpenCL design examples, refer to the OpenCL Design Examples page on the Altera website.

Important: Before you program your Cyclone V SoC with the hardware image, ensure that your SoC contains an image created using the current version of the AOCL.

The figure below summarizes the steps you perform to program your Cyclone V SoC.
1. Download the SoC-specific hello_world example OpenCL application from the OpenCL Design Examples page on the Altera website.

2. Extract the hello_world example (exm_opencl_hello_world_x32_linux_<version>) to a location to which you have write access.

3. Ensure that you set the environment variable AOCL_BOARD_PKG_ROOT to point to the Cyclone V SoC Development Kit Reference Platform (that is, ALTERAOCLSDKROOT/board/c5soc).

4. At a command prompt, navigate to the hello_world design.

5. To list the SoC boards available in the Cyclone V SoC Development Kit Reference Platform, invoke the aoc --list-boards command.
You should see an output similar to the one below:

Board list:
 c5soc
 c5soc_sharedonly

6. To compile the kernel for your Cyclone V SoC Development Kit, invoke the following command:

```shell
aoc --board c5soc device/hello_world.cl -o bin/hello_world.aocx
```

This command performs the following tasks:

- Generates the Quartus II design project files from the OpenCL source code.
- Checks for initial syntax errors.
- Performs basic optimizations.
- Creates a `hello_world` subfolder or subdirectory containing necessary intermediate files.
- Creates the `Altera Offline Compiler Object file (.aoc)`.
- Creates the `.aocx` hardware configuration file and saves it in the `bin` subfolder or subdirectory.

Attention: The `.aocx` file might take hours to build, depending on the complexity of the kernel. To view the progress of the compilation on-screen, include the `-v` flag in your `aoc` command (that is, `aoc -v <your_kernel_filename>.cl`).

The AOC displays the line `aoc: Hardware generation completed successfully.` to signify the completion of the compilation process.

For more information on the `--list-boards` option of the `aoc` command, refer to the *Listing the Available FPGA Boards in Your Custom Platform (--list-boards)* section of the *Altera SDK for OpenCL Programming Guide*.

For more information on the `--board <board_name>` option of the `aoc` command, refer to the *Compiling a Kernel for a Specific FPGA Board (--board <board_name>)* section of the *Altera SDK for OpenCL Programming Guide*.

For more information on the `-v` option of the `aoc` command, refer to the *Generating Compilation Progress Report (-v)* section of the *Altera SDK for OpenCL Programming Guide*.

For more information on the `-o <filename>` option of the `aoc` command, refer to the *Specifying the Name of an AOC Output File (-o <filename>)* section of the *Altera SDK for OpenCL Programming Guide*.

Related Information

- OpenCL Design Examples page on the Altera website
- Listing the Available FPGA Boards in Your Custom Platform (--list-boards)
- Compiling a Kernel for a Specific FPGA Board (--board <board_name>)
- Generating Compilation Progress Report (-v)
- Specifying the Name of an AOC Output File (-o <filename>)

Executing an OpenCL Kernel on an SoC

Build your host application using the GNU Compiler Collection (GCC) cross-compiler available with the SoC Embedded Design Suite (EDS).

Related Information

Creating the Hardware Configuration File of an OpenCL Kernel for SoC on page 3-11
Building the Host Application

Build your SoC-specific OpenCL host application using the GNU Compiler Collection (GCC) cross-compiler available with the SoC Embedded Design Suite (EDS).

1. Perform the following tasks to download the hello_world design example.
 a. Download the SoC-specific hello_world design example (<version> Arm32 Linux package (.tgz)) from the Hello World Design Example page within the Altera website.
 b. Extract `exm_opencl_hello_world_arm32_linux.<version>.tar` to a location to which you have write access.
 c. Ensure that you set the environment variable `AOCL_BOARD_PACKAGE_ROOT` to point to the Cyclone V SoC Development Kit Reference Platform (that is, `SALTERAOCLSDKROOT/board/c5soc`).

2. At a command prompt, invoke the following command to set the `PATH` environment variable:
   ```
   export PATH=<path_to_SoCEDS_installation_dir>/ds-5/sw/gcc/bin:$PATH
   ```

3. Navigate to the `<path_to_exm_opencl_hello_world_arm32_linux.<version>>/hello_world` directory.

4. Invoke the `make -f Makefile` command. Alternatively, you can simply invoke the `make` command.
 The hello_world executable will be in the `<path_to_exm_opencl_hello_world_arm32_linux.<version>>/hello_world/bin` directory.

Related Information
Hello World Design Example page on the Altera website

Running the Host Application

To execute the `hello_world.aocx` Altera Offline Compiler Executable file on the SoC, run the host application you built from the ARM-specific Makefile.

1. Log into your SoC board.
2. Copy the `hello_world.aocx` hardware configuration file and the hello_world host executable from the `<exm_opencl_hello_world_arm32_linux.<version>>/hello_world/bin` to the board.
3. Ensure that the `LD_LIBRARY_PATH` environment variable includes the `$ALTERAOCLSDKROOT/host/arm32/lib`.
4. To execute the kernel on the SoC, at a command prompt, navigate to the host executable directory and run the hello_world host executable.

Output from Successful Kernel Execution on the Cyclone V SoC Development Kit

When you run the host application to execute your OpenCL kernel on the Cyclone V SoC Development Kit, the software notifies you of a successful kernel execution.

Example output:

```
Found 1 OpenCL platforms.

Querying platform for info:
==========================
CL_PLATFORM_NAME                     = Altera SDK for OpenCL
CL_PLATFORM_VENDOR                   = Altera Corporation
CL_PLATFORM_VERSION               = OpenCL 1.0 Altera SDK for OpenCL, Version <version>

Querying device for info:
========================
CL_DEVICE_NAME                      = c5soc : Cyclone V SoC Development Kit
```
CL_DEVICE_VENDOR = Altera
CL_DEVICE_VENDOR_ID = 4466
CL_DEVICE_VERSION = OpenCL 1.0 Altera SDK for OpenCL, Version <version>
CL_DRIVER_VERSION = <version>
CL_DEVICE_ADDRESS_BITS = 64
CL_DEVICE_AVAILABLE = true
CL_DEVICE_ENDIAN_LITTLE = true
CL_DEVICE_GLOBAL_MEM_CACHE_SIZE = 32768
CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE = 0
CL_DEVICE_GLOBAL_MEM_SIZE = 2147483648
CL_DEVICE_IMAGE_SUPPORT = false
CL_DEVICE_LOCAL_MEM_SIZE = 16384
CL_DEVICE_MAX_CLOCK_FREQUENCY = 1000
CL_DEVICE_MAX_COMPUTE_UNITS = 1
CL_DEVICE_MAX_CONSTANT_ARGS = 8
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE = 3758096384
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = 3
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = 1024
CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE = 128
CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR = 4
CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT = 2
CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT = 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG = 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT = 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE = 0
Command queue out of order? = false
Command queue profiling enabled? = true

Kernel initialization is complete.
Launching the kernel...

Thread #2: Hello from Altera's OpenCL Compiler!

Kernel execution is complete.

Uninstalling the Software

To uninstall the AOCL for Linux, remove the software package via the Red Hat Package Manager (RPM) or GUI uninstaller, then delete the software directory and restore all modified environment variables to their previous settings.

1. Remove the software package by performing one of the following tasks:
 a. To uninstall the AOCL via RPM at the command line, type the `rpm -e aocl-sdk` command.
 b. To uninstall the AOCL via the GUI uninstaller, run the `aocl-<version>-uninstall.run` program located in the `<install directory>/uninstall` directory.

2. Remove `$ALTERAOCLSDKROOT/bin` from the `PATH` environment variable.

3. Remove `$ALTERAOCLSDKROOT/host/linux64/lib` from the `LD_LIBRARY_PATH` environment variable.

4. Remove the `ALTERAOCLSDKROOT` environment variable.
Table A-1: Document Revision History of the Altera SDK for OpenCL Cyclone V SoC Getting Started Guide

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2015</td>
<td>15.0.0</td>
<td>• Organized instructions into the following sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Setting Up the Altera SDK for OpenCL on SoC for Windows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Setting Up the Altera SDK for OpenCL on SoC for Linux</td>
</tr>
<tr>
<td>December 2014</td>
<td>14.1.0</td>
<td>• Reorganized information flow.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Red Hat Enterprise Linux (RHEL) version support.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Included information on the <code>ALTERAOCLSDKROOT/init_opencl</code> script</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for setting environment variables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added the Contents of the AOCL section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consolidated software uninstallation instructions and moved them</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the end of the document.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated the kernel compilation command in the figure Cyclone V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SoC Development Kit Programming Overview.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated licensing instructions for the new Altera Software</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Development Kit (SDK) for OpenCL (AOCL) license.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated instructions for building and running the host application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for SoC.</td>
</tr>
<tr>
<td>June 2014</td>
<td>14.0.0</td>
<td>• Initial Release.</td>
</tr>
</tbody>
</table>