
Challenge
Simulation of tsunamis combines simulation of a physical process with massive
data on ocean depths. These calculations are generally done on massively parallel
supercomputers, but the result is poor hardware utilization and performance.

Solution
Accelerating the inner loops of the simulation with hardware floating-point
FPGAs resulted in performance up to 383 GFLOPS at power efficiency of over 8.4
GFLOPS/W†.

The Project
We needed a high-performance but low-power computing solution to perform
tsunami simulation with a real data-set of ocean depth. This requires efficient
computation with high utilization of floating-point operators under a limited
bandwidth of external memories.

The simulation uses what are known as shallow-water equations, a set of partial
differential equations that describe fluid flow in response to a pressure wave. We
provide as input to the solver actual bathymetry data—measured depth information
about the ocean as it approaches the shore.

The Design Challenge
Tsunami simulation is usually performed by using supercomputers with
multi-core processors and many-core accelerators such as graphic processing
units (GPUs). Software-based parallel computing with a lot of on-chip cores on
computing nodes achieves high-performance simulation.

But such software-based massively parallel computing often suffers from
insufficient memory bandwidth and becomes inefficient‒especially in the case of
algorithms with a low operational intensity. Operational intensity is a ratio of the
number of operations to the amount of data that must be loaded from external
memories. It is expressed as the number of operations performed per a unit data
size, typically in FLOP/Byte. Since each processor has its inherent ratio of the peak
arithmetic performance in GFLOPS to the available external memory bandwidth in
gigabytes per second (Gbps), sustainable performance is generally limited by the
memory bandwidth when algorithms have a low operational intensity.

As a result, such memory-bound computation becomes inefficient in terms of
performance per computing core, performance per power, and performance per
cost. Although there exist several techniques to improve operational intensity
for some specific algorithms, such as temporal blocking with more efficient
reuse of data in cache memories, a fixed memory sub-system of CPUs or GPUs is
fundamentally not suitable to implement ideal data movement between cores on a
chip. For example, CPUs and GPUs need to read/write data from/to a shared cache
memory even if we should directly move the data from one core to another.

The Design Team

Professor Sano, a member of the
Department of Computer and
Mathematical Sciences at Tohoku
University (Sendai, Japan), conducts
research in parallel and reconfigurable
computing. His team has applied FPGAs
and GPUs to acceleration of demanding
physics problems.

Accelerating Simulation
of Tsunamis
By Kentaro Sano, Associate Professor, Tohoku University

Design solution

Design Solution | Accelerating Simulation of Tsunamis

The Design Solution
Computation of tsunami simulation is expressed as stencil
computation for a finite difference algorithm. Stencil
computation uses data of adjacent grid cells to update each
cell.

The tsunami is simulated as ocean-wide wave propagation
by solving the shallow water equations (SWEs), which
describe the flow below a pressure surface of a fluid. SWEs
are composed of a set of the following partial differential
equations (PDEs):

Where

Here, t, x, and y are the time, and the coordinates in the
longitude and latitude directions, respectively. The u, v,
and g denote the longitude and latitude components of the
wave velocity, and the acceleration of gravity. H is the length
between the surface and the bottom water, which is given by
H=D+η where D and η denote the mean height of the ocean
surface and the height of propagating waves, respectively.

One of the methods to numerically solve SWEs is the
method of splitting tsunami(MOST) [1] . In MOST, spatial
decomposition is applied along the coordinates so that the
SWEs are split and converted into two canonical forms of
PDEs for x and y, respectively. For example, the canonical
form of the equation for x direction is obtained as:

with

Where v’, p, and q are Riemann invariants of the equation. λ1,
λ2, and λ3 are the eigenvalues of A, which are given with
 and . More details are available in [1].
Then we apply the finite difference scheme to make discrete
forms of the canonical equations on a 2-dimensional
orthogonal grid. For the canonical form of x direction, we
obtain:

Where n, i, and j denote the time step, a position on the
2D grid, respectively. The discrete equation for y direction
is given similarly. Then we can obtain the values for the
next time step, (n+1), by numerically solving these discrete
equations, one by one, separately along the longitude and
latitude coordinates.

We designed custom computing hardware for high-
performance tsunami simulation with FPGAs, based on deep
pipelining and coarse-grained parallelism for performance
scalability on a chip. By pipelining, we can perform a lot of
operations per memory access to increase the sustained
performance even with a limited bandwidth of external
memories. Coarse-grained parallelism allows us to exploit
available hardware resources to scale the performance.

Theory of Operation
Figure 1 shows a stream processing element (SPE) which
computes a single time step of the tsunami propagation
based on MOST. The SPE is designed as a pipeline to take
an input of a data stream with grid cells, each of which
consists of eight 32 bit words. By traversing a grid cell in the
x-direction first order and inputting the sequence of cells to
the SPE, we can obtain the grid data updated for a single time
step. To construct a deep pipeline, we first merged all the
computing stages including boundary treatment for both x-
and y- directions into a single loop kernel, and then streamed
it for hardware design.

As Figure 1 shows, SPE is composed of two major parts: the
x-dir stages and the y-dir stages. Each part consists of a
canonical transform unit, a stencil buffer, a main computing
unit, and an inverse transform unit. The transform units
and the computing units have data-flow structures for all
numerical computations with single-precision floating-
point operators. The stencil buffer is used to refer the data
of the adjacent grid cells in their streamed sequence. The
stencil buffer has a structure with shift registers, to delay
the outputs of the streamed input for multiple references of
different cells. This technique is also known as a line buffer,
and it is especially used in image processing applications. In
a single SPE, we implemented 147 adders, 121 multipliers,
12 dividers, and 2 square root operators, which are totally
counted as 288 equivalent arithmetic operators. Here, we
consider a single square root operator as four equivalent
arithmetic operations.

X-dir Canonical Transform Unit

Stream Input of Grid Data

X-dir Inverse Transform Unit

Y-dir Canonical Transform Unit

Y-dir Inverse Transform Unit

X-dir Stencil Buffer

X-dir Main Computing Unit

Y-dir Stencil Buffer

Y-dir Main Computing Unit

SPE: Stream-Processing Element
Stream Output of Updated Grid Data

Figure 1. A Stream Processing Element (SPE)

2

Design Solution | Accelerating Simulation of Tsunamis

Since a state-of-the-art FPGA is very big with a lot of logic
elements, registers, and DSP blocks, we cannot use all of
them only with a single SPE. We introduced a coarse-grained
array with the spatial and temporal parallelism [2] of an SPE,
as shown in Figure 2. First, we increase the number of internal
pipelines in the SPE to perform more operations every cycle.
With n pipelines, we can have n times higher performance if
simultaneously n times wider bandwidth is available. If not,
the performance is limited by the available bandwidth. Then,
we introduced temporal parallelism by pipelining multiple
SPEs to compute multiple successive time-steps at one time.
In Figure 2, we cascade m SPEs to make the pipeline m times
longer. This technique is similar to so-called loop-unrolling
used in software optimization. Since cascading SPEs does
not increase the bandwidth requirement of a stream, we can
fill an FPGA with many SPEs and fully utilize them even with
limited bandwidth available.

However, the temporal parallelism also has disadvantages.
First, the much longer pipeline has a larger pipelining
overhead, which causes lower utilization due to the prologue
and epilogue in pipelining. When the data stream is not
sufficiently long, a long pipeline is likely to cause inefficiency.
Second, we cannot save the intermediate results in the
pipeline to memory or storage. For example, assuming 1000
SPEs were cascaded, we could send a result to memory only
once in every 1000 time-steps. Due to these reasons, it is
not feasible to infinitely increase the number of cascaded
SPEs. Thus, we need to balance the spatial and temporal
parallelism by constructing SPE arrays of Figure 2 with n
pipelines and m cascaded SPEs, which is denoted by (n, m).

We implemented the SPE array operating at 225 MHz with
an Intel® Arria® 10 10AX115 FPGA on a DE5A-NET board.
Since the peak bandwidth of 2 x 12.8 Gbps given by two
DDR3 SDRAMs on the board can satisfy only the bandwidth
requirement of a single pipelined SPE, we explored the design
space for SPE arrays with (n, m) = (1, m). We implemented
the data-flow pipeline with single-precision floating point
operators by using our own developed compiler, called
SPGen [2, 3]. With SPGen, we can generate datapaths for data
flow with codes describing computing formulae and calls of
functions. We used the hardware floating-point DSP blocks
of the Arria 10 FPGA for addition and multiplication, while the
resource assignment can be further optimized.

We put the SPE array into the user designed streaming
core in the acceleration framework shown in Figure 3. The
framework provides fixed functions necessary for stream
computation, which includes a PCI Express* interface, DDR3
memory interfaces, scatter-gather(SG) DMAs, dual-clock(DC)
FIFOs, and width converters of Avalon® Streaming
(Avalon-ST) connections. We also implemented a Linux*
PCI Express driver with SGDMA control capability, and
software which initializes the grid data, uploads them to
the FPGA’s external memories, starts computation with the
FPGA, downloads the results, and visualizes it. The result is a
real-time FPGA-based computation and visualization system,
which is shown in Figure 4. The system simulates tsunami
propagation over the Pacific ocean with the real geometry
data of the sea (called bathymetry data). The computational
grid as 2581 x 2879 cells.

Input of a Data Stream (n x width)

SPE 1

SPE 2

SPE m

Pipe 1 Pipe n

Pipe 1 Pipe n

Pipe 1 Pipe n

Stencil Buffer (x dir)

Stencil Buffer (y dir)

Output of a data stream (n x width)

Figure 2. A Pipeline of SPEs

Figure 3. The Acceleration Framework

Figure 4. The FPGA Demonstration System

250MHz
200MHz

PCIe
I/F

SGDMA
Write

SGDMA
Write

SGDMA
Read

SGDMA
Read

DCFIFO

DCFIFO

Width Converter

Width Converter

~225MHz

User Designed
Streaming Core

M
em

ory 1
M

em
ory 2

12.8
GB/s

12.8
GB/s

DDR3
I/F 1

DDR3
I/F 2

3

Design Solution | Accelerating Simulation of Tsunamis

© Intel Corporation. All rights reserved. The following Design Solution was prepared and issued by Tohoku University. This Design Solution is being provided by Intel solely as an
accomodation, and INTEL DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT, AS WELL AS ANY WARRANTY ARISING FROM COURSE OF PERFORMANCE, COURSE OF DEALING, OR USAGE IN TRADE. IN NO EVENT
SHALL INTEL, ITS SUSIDIARIES AND AFFILIATES HAVE ANY LIABILITY FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE DESIGN SOLUTION OR THE USE BY ANYONE THEREOF; and (iii) this agreement shall be governed in all respects by the laws of the State
of Delaware. Intel does not recommend, suggest or require that this Design Solution be used in conjunction or combination with any other software or product, and makes no representation,
warraties or guaranties, implied or express, as to the Design Solution or its contents, including as to the accuracy, completeness or genuineness thereof. Please contact Tohoku University for a
complete, current version thereof or for further information.

© Intel Corporation. Intel, the Intel logo, the Intel Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Experience What’s Inside, Intel Atom, Intel Core, Intel Xeon, MAX, Nios, Quartus and Stratix
words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. See Trademarks on intel.com for full list of Intel trademarks. *Other marks and brands
may be claimed as the property of others.

Results
The detailed results are available in [3] for implementation
with the Arria 10 FPGA and performance comparison with
GPUs. With Arria 10 10AX115 FPGA, we could implement
up to m=6: six cascaded SPEs. Figure 5 shows the resource
consumption of the entire design including the framework
for m=1, 2, 4, and 6. The number of SPEs is limited by both
adaptive logic modules (ALMs) and floating-point DSP blocks.
The array of six cascaded SPEs use 1386 floating-point
DSP blocks, but some of them are not fully utilized for both
addition and multiplication yet.

We measured a stall ratio—the ratio of stall cycles to the
total processing cycles. Then we calculated the sustainable
performance of tsunami simulation with the measured stall
ratio, the number of equivalent arithmetic operations per SPE
(288), and the Arria 10 streaming core operating frequency
of 225 MHz. The array with m=6 cascaded SPEs achieved
383 GFlops. We also measure the voltage and current for the
DE5A-NET board at the PCI Express edge connector and the
aux power supply of the board. Since the power consumption
was 45.5 W, the sustainable performance per power was 8.42
GFlops/W for the board†. This includes all power consumed
by the board, not just core power consumption.

1 SPE 2 SPEs

4 SPEs 6 SPEs

ALMs Registers BRAM Bits FP DSPs

Re
so

ur
ce

 C
on

su
m

pt
io

n
[%

]

0

10

20

30

40

50

60

70

80

90

100

Figure 5. Resource consumption by SPE array
 (Arria 10 10AX115 FPGA)

We also made performance and power measurements for
GPUs. As reported in [3], tsunami simulation implementations
with Tesla K20 and Radeon R9 280X GPUs achieved 44.6
and 219 GFLOPS at 91.5 and 184.9 W, respectively†. We
used CUDA and OpenCLTM to write the codes and optimize
them to a certain degree for Tesla K20 and Radeon R9 280X
GPUs, respectively. Of course further optimization may still
be possible. As a result, these GPUs achieved the sustainable
performance per power of 0.49 and 1.19 GFLOPS/W†. These
results demonstrate that, at least in comparison with GPUs,
the state-of-the-art mid-level FPGA can bring comparable or
higher floating-point performance even with a much lower
bandwidth of external memories, and can achieve much
higher sustainable performance for the power consumed.

References
[1] V. Titov and F. Gonzalez, “Implementation and testing of

the method of splitting tsunami (MOST) model,” NOAA
Technical Memorandum ERL PMEL-112, 1997.

[2] Kentaro Sano, “DSL-based Design Space Exploration
for Temporal and Spatial Parallelism of Custom Stream
Computing,” Proceedings of the Second International
Workshop on FPGAs for Software Programmers (FSP
2015), arXiv:1509.00040, September, 2015.

[3] Kohei Nagasu, Kentaro Sano, Fumiya Kono, and Naohito
Nakasato, “FPGA-based Tsunami Simulation: Performance
Comparison with GPUs, and Roofline Model for Scalability
Analysis,” Journal of Parallel and Distributed Computing,
http://dx.doi.org/10.1016/j.jpdc.2016.12.015, (in press).

DS-1005-1.0

† Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

4

