
Challenge
Simulation of tsunamis combines simulation of a physical process with massive 
data on ocean depths. These calculations are generally done on massively parallel 
supercomputers, but the result is poor hardware utilization and performance.

Solution
Accelerating the inner loops of the simulation with hardware floating-point 
FPGAs resulted in performance up to 383 GFLOPS at power efficiency of over 8.4 
GFLOPS/W†.   

The Project
We needed a high-performance but low-power computing solution to perform 
tsunami simulation with a real data-set of ocean depth. This requires efficient 
computation with high utilization of floating-point operators under a limited 
bandwidth of external memories.

The simulation uses what are known as shallow-water equations, a set of partial 
differential equations that describe fluid flow in response to a pressure wave. We 
provide as input to the solver actual bathymetry data—measured depth information 
about the ocean as it approaches the shore.

The Design Challenge
Tsunami simulation is usually performed by using supercomputers with  
multi-core processors and many-core accelerators such as graphic processing 
units (GPUs). Software-based parallel computing with a lot of on-chip cores on 
computing nodes achieves high-performance simulation.

But such software-based massively parallel computing often suffers from 
insufficient memory bandwidth and becomes inefficient‒especially in the case of 
algorithms with a low operational intensity. Operational intensity is a ratio of the 
number of operations to the amount of data that must be loaded from external 
memories. It is expressed as the number of operations performed per a unit data 
size, typically in FLOP/Byte. Since each processor has its inherent ratio of the peak 
arithmetic performance in GFLOPS to the available external memory bandwidth in 
gigabytes per second (Gbps), sustainable performance is generally limited by the 
memory bandwidth when algorithms have a low operational intensity. 

As a result, such memory-bound computation becomes inefficient in terms of 
performance per computing core, performance per power, and performance per 
cost. Although there exist several techniques to improve operational intensity 
for some specific algorithms, such as temporal blocking with more efficient 
reuse of data in cache memories, a fixed memory sub-system of CPUs or GPUs is 
fundamentally not suitable to implement ideal data movement between cores on a 
chip. For example, CPUs and GPUs need to read/write data from/to a shared cache 
memory even if we should directly move the data from one core to another.
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The Design Solution
Computation of tsunami simulation is expressed as stencil 
computation for a finite difference algorithm. Stencil 
computation uses data of adjacent grid cells to update each 
cell.

The tsunami is simulated as ocean-wide wave propagation 
by solving the shallow water equations (SWEs), which 
describe the flow below a pressure surface of a fluid. SWEs 
are composed of a set of the following partial differential 
equations (PDEs):

Where

Here, t, x, and y are the time, and the coordinates in the 
longitude and latitude directions, respectively. The u, v, 
and g denote the longitude and latitude components of the 
wave velocity, and the acceleration of gravity. H is the length 
between the surface and the bottom water, which is given by 
H=D+η where D and η denote the mean height of the ocean 
surface and the height of propagating waves, respectively.

One of the methods to numerically solve SWEs is the 
method of splitting tsunami(MOST) [1] . In MOST, spatial 
decomposition is applied along the coordinates so that the 
SWEs are split and converted into two canonical forms of 
PDEs for x and y, respectively. For example, the canonical 
form of the equation for x direction is obtained as:

with

Where v’, p, and q are Riemann invariants of the equation. λ1, 
λ2, and λ3 are the eigenvalues of A, which are given with  
             and                              . More details are available in [1].  
Then we apply the finite difference scheme to make discrete 
forms of the canonical equations on a 2-dimensional 
orthogonal grid. For the canonical form of x direction, we 
obtain:

Where n, i, and j denote the time step, a position on the 
2D grid, respectively. The discrete equation for y direction 
is given similarly. Then we can obtain the values for the 
next time step, (n+1), by numerically solving these discrete 
equations, one by one, separately along the longitude and 
latitude coordinates.

We designed custom computing hardware for high-
performance tsunami simulation with FPGAs, based on deep 
pipelining and coarse-grained parallelism for performance 
scalability on a chip. By pipelining, we can perform a lot of 
operations per memory access to increase the sustained 
performance even with a limited bandwidth of external 
memories. Coarse-grained parallelism allows us to exploit 
available hardware resources to scale the performance.

Theory of Operation
Figure 1 shows a stream processing element (SPE) which 
computes a single time step of the tsunami propagation 
based on MOST. The SPE is designed as a pipeline to take 
an input of a data stream with grid cells, each of which 
consists of eight 32 bit words. By traversing a grid cell in the 
x-direction first order and inputting the sequence of cells to 
the SPE, we can obtain the grid data updated for a single time 
step. To construct a deep pipeline, we first merged all the 
computing stages including boundary treatment for both x- 
and y- directions into a single loop kernel, and then streamed 
it for hardware design.

As Figure 1 shows, SPE is composed of two major parts: the 
x-dir stages and the y-dir stages. Each part consists of a 
canonical transform unit, a stencil buffer, a main computing 
unit, and an inverse transform unit. The transform units 
and the computing units have data-flow structures for all 
numerical computations with single-precision floating-
point operators. The stencil buffer is used to refer the data 
of the adjacent grid cells in their streamed sequence. The 
stencil buffer has a structure with shift registers, to delay 
the outputs of the streamed input for multiple references of 
different cells. This technique is also known as a line buffer, 
and it is especially used in image processing applications. In 
a single SPE, we implemented 147 adders, 121 multipliers, 
12 dividers, and 2 square root operators, which are totally 
counted as 288 equivalent arithmetic operators. Here, we 
consider a single square root operator as four equivalent 
arithmetic operations.
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Figure 1. A Stream Processing Element (SPE)
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Since a state-of-the-art FPGA is very big with a lot of logic 
elements, registers, and DSP blocks, we cannot use all of 
them only with a single SPE. We introduced a coarse-grained 
array with the spatial and temporal parallelism [2] of an SPE, 
as shown in Figure 2. First, we increase the number of internal 
pipelines in the SPE to perform more operations every cycle. 
With n pipelines, we can have n times higher performance if 
simultaneously n times wider bandwidth is available. If not, 
the performance is limited by the available bandwidth. Then, 
we introduced temporal parallelism by pipelining multiple 
SPEs to compute multiple successive time-steps at one time. 
In Figure 2, we cascade m SPEs to make the pipeline m times 
longer. This technique is similar to so-called loop-unrolling 
used in software optimization. Since cascading SPEs does 
not increase the bandwidth requirement of a stream, we can 
fill an FPGA with many SPEs and fully utilize them even with 
limited bandwidth available. 

However, the temporal parallelism also has disadvantages. 
First, the much longer pipeline has a larger pipelining 
overhead, which causes lower utilization due to the prologue 
and epilogue in pipelining. When the data stream is not 
sufficiently long, a long pipeline is likely to cause inefficiency. 
Second, we cannot save the intermediate results in the 
pipeline to memory or storage. For example, assuming 1000 
SPEs were cascaded, we could send a result to memory only 
once in every 1000 time-steps. Due to these reasons, it is 
not feasible to infinitely increase the number of cascaded 
SPEs. Thus, we need to balance the spatial and temporal 
parallelism by constructing SPE arrays of Figure 2 with n 
pipelines and m cascaded SPEs, which is denoted by (n, m).

We implemented the SPE array operating at 225 MHz with 
an Intel® Arria® 10 10AX115 FPGA on a DE5A-NET board. 
Since the peak bandwidth of 2 x 12.8 Gbps given by two 
DDR3 SDRAMs on the board can satisfy only the bandwidth 
requirement of a single pipelined SPE, we explored the design 
space for SPE arrays with (n, m) = (1, m). We implemented 
the data-flow pipeline with single-precision floating point 
operators by using our own developed compiler, called 
SPGen [2, 3]. With SPGen, we can generate datapaths for data 
flow with codes describing computing formulae and calls of 
functions. We used the hardware floating-point DSP blocks 
of the Arria 10 FPGA for addition and multiplication, while the 
resource assignment can be further optimized.

We put the SPE array into the user designed streaming 
core in the acceleration framework shown in Figure 3. The 
framework provides fixed functions necessary for stream 
computation, which includes a PCI Express* interface, DDR3 
memory interfaces, scatter-gather(SG) DMAs, dual-clock(DC) 
FIFOs, and width converters of Avalon® Streaming  
(Avalon-ST) connections. We also implemented a Linux* 
PCI Express driver with SGDMA control capability, and 
software which initializes the  grid data, uploads them to 
the FPGA’s external memories, starts computation with the 
FPGA, downloads the results, and visualizes it. The result is a 
real-time FPGA-based computation and visualization system, 
which is shown in Figure 4. The system simulates tsunami 
propagation over the Pacific ocean with the real geometry 
data of the sea (called bathymetry data). The computational 
grid as 2581 x 2879 cells.
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Figure 2. A Pipeline of SPEs
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Figure 4. The FPGA Demonstration System 
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Results
The detailed results are available in [3] for implementation 
with the Arria 10 FPGA and performance comparison with 
GPUs. With Arria 10 10AX115 FPGA, we could implement 
up to m=6: six cascaded SPEs. Figure 5 shows the resource 
consumption of the entire design including the framework 
for m=1, 2, 4, and 6. The number of SPEs is limited by both 
adaptive logic modules (ALMs) and floating-point DSP blocks. 
The array of six cascaded SPEs use 1386 floating-point 
DSP blocks, but some of them are not fully utilized for both 
addition and multiplication yet.

We measured a stall ratio—the ratio of stall cycles to the 
total processing cycles. Then we calculated the sustainable 
performance of tsunami simulation with the measured stall 
ratio, the number of equivalent arithmetic operations per SPE 
(288), and the Arria 10 streaming core operating frequency 
of 225 MHz. The array with m=6 cascaded SPEs achieved 
383 GFlops. We also measure the voltage and current for the 
DE5A-NET board at the PCI Express edge connector and the 
aux power supply of the board. Since the power consumption 
was 45.5 W, the sustainable performance per power was 8.42 
GFlops/W for the board†. This includes all power consumed 
by the board, not just core power consumption.
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Figure 5.  Resource consumption by SPE array  
 (Arria 10 10AX115 FPGA)

We also made performance and power measurements for 
GPUs. As reported in [3], tsunami simulation implementations 
with Tesla K20 and Radeon R9 280X GPUs achieved 44.6 
and 219 GFLOPS at 91.5 and 184.9 W, respectively†. We 
used CUDA and OpenCLTM to write the codes and optimize 
them to a certain degree for Tesla K20 and Radeon R9 280X 
GPUs, respectively. Of course further optimization may still 
be possible. As a result, these GPUs achieved the sustainable 
performance per power of 0.49 and 1.19 GFLOPS/W†. These 
results demonstrate that, at least in comparison with GPUs, 
the state-of-the-art mid-level FPGA can bring comparable or 
higher floating-point performance even with a much lower 
bandwidth of external memories, and can achieve much 
higher sustainable performance for the power consumed.
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