With today's competitive pressures and short product life cycles, you need to innovate quickly to win in your marketplace. You face an increasing number of competitors, and need to differentiate your product to reach numerous markets. **TIME is the driving force:** time to knowledge, time to market, time *in* market, and, of course, time to profit.

The ideal development solution would allow you to:

- Get your products to market six to nine months earlier than with a standard cell technology flow
- Create your first product at a fraction of the traditional development cost
- Introduce multiple variations of a product—customized to different markets—at the same time
- Move from prototype to low-cost production quickly, while minimizing cost and engineering effort
- Migrate seamlessly to a structured ASIC for a fast path to production (turnaround time in weeks) with up-front non-recurring engineering (NRE) costs at a fraction of ASIC NRE costs

Spend less. Do more.

Get there first.
Design Without Compromise

The perfect scenario uses a high-density FPGA as a low-risk prototyping platform that provides the flexibility to test-market your product so you choose the right features before finalizing your design. When you’re ready for volume production, you can seamlessly migrate to a structured ASIC that costs up to 90 percent less than the FPGA. And all this is possible with a US$2,000 development software tool.

Altera is the only company that offers this complete prototype-to-production platform to both system and semiconductor companies. With Altera’s solution, you can create your designs using existing development tools, including standard EDA tools, then verify the design in-system with an FPGA. You can demonstrate your technology to customers and change your design on the fly, customizing your products for the marketplace and even bringing multiple variations to different markets at the same time. Because you don’t have to commit to an NRE cost, risk and investment is minimal, giving you a competitive advantage. And, to protect your designs against...

Demonstrate your technology to customers and change your design on the fly, customizing your products for the marketplace…bringing multiple variations to different markets at the same time.

Innovative ASSP Development Model

COMPANY: Infineon Technologies, Communication Group

APPLICATION: MetroMapper 622 ASSP chip, a mapper/framer capable of mapping datacom traffic into SONET/SDH transport payloads

Entering a new market, the Infineon group faced time-to-market pressures, limited engineering resources, limited funding, and multiple customers each looking for customization. Unwilling to risk the time and millions needed for standard cell ASIC development, the Infineon group chose Altera’s HardCopy...
You’ll get guaranteed, fully operational structured ASICs in record time, minimizing risk and helping you get to market as quickly as possible.

intellectual property theft, Altera® FPGAs also include built-in, non-volatile encryption.

Once the design is finalized, Altera takes over and migrates it to a pin-compatible, functionally equivalent HardCopy® structured ASIC for mid- to high-volume production. There’s no need to re-spin the board. You’ll get guaranteed, fully operational structured ASICs in record time, minimizing risk and helping you get to market as quickly as possible.

structured ASICs. Infineon sent Stratix® FPGA development boards to various customers for design input and created two FPGA supersets, ultimately making a number of customers happy. After in-system validation, the Infineon design was migrated to two HardCopy structured ASICs by Altera.

This unique design methodology allowed the Infineon group to uniquely customize the designs for end customers at a fraction of the cost of ASIC development. The fast turnaround time for HardCopy prototypes enabled Infineon to beat their competition to market.

For more information, visit www.altera.com/hardcopy
A With ASICS, all silicon layers are customized. In contrast, structured ASICSs start with standard, pre-tested base layers of logic and hard intellectual property (IP), and the proprietary design is then implemented on the top few metal layers. This process saves development time and costs considerably less, but can be risky if you don’t verify the design in-system before committing to silicon. Altera offers the only solution with an FPGA front-end, minimizing cost and risk, improving flexibility, and speeding time-to-market.

A Yes. HardCopy structured ASICSs are pin- and footprint-compatible with their FPGA counterparts, eliminating the need to respin the board.

A HardCopy II structured ASICSs can consume less than half the core power of their FPGA counterparts (dynamic and static) because the HardCopy II die is significantly smaller, and because only the logic used in the HardCopy II device is powered on.

A Using Altera’s Quartus® II development software, simply generate a Quartus II Archive File (.qar) using the HardCopy Files Wizard. This file contains everything the HardCopy Design Center needs to develop a HardCopy structured ASIC. The Altera HardCopy Design Center manages the migration process.

A Once all the required design guidelines are met and Altera accepts the design, the design can be migrated to a HardCopy series structured ASIC in two to four weeks. HardCopy prototypes will generally be available within five to seven weeks after you have approved the timing results. Production units will generally be delivered within eight weeks from when the prototypes are approved.

A No. You can use the same Quartus II design software to migrate your FPGA design—including any IP that is part of the design—to a HardCopy structured ASIC.

A Altera’s design flow supports standard synthesis, verification, timing analysis, and equivalency checking tools from Cadence, Mentor Graphics, Synopsys, and Synplicity in conjunction with Altera’s Quartus II design environment, minimizing training time and expenses. The Quartus II software, the only design software that supports parallel FPGA and structured ASIC design and development, also supports the same basic design, register transfer level (RTL) synthesis, place-and-route, and verification flows used by ASIC designers.

For more information, visit www.altera.com/hardcopy