EC220 32-bit PCI Master/Target

FEATURES

- Fully supports PCI specification 2.1 and 2.2 protocol.
- Designed for ASIC and PLD implementations.
- Fully static design with edge triggered flip-flops.
- Efficient back-end interface for different types of user devices.
- Supports compact PCI, Cardbus, Mini-PCI and Power Management.
- Combined bus master and target functions.
 Master function
 - Initiate PCI memory and IO read/write.
 - Automatic transfer restart on target retry and disconnect
 Target function
 - Memory or IO read/write
 - Configuration read/write
 - Support for back-end initiated target retry, disconnect and abort.
- Supports Zero wait state and user inserted wait state burst data transfer.
- Dual write buffer supports write data posting.
- User controlled burst and non-burst data transfer.
- Automatic handling of configuration register read/write access.
- Supports user initiated target retry, disconnect, abort and delayed transaction.
- Parity generation and parity error detection.
- Includes all PCI specific configuration registers.
- Supports high speed bus request and bus parking.

DESCRIPTIONS

The 32-bit PCI bus master/target core is optimized for different applications. The back-end interface is a highly efficient and flexible back-end bus which provides for easy integration with other user logic. The core utilizes double data buffer design approach which minimizes design gate count and achieves highest possible
The PCI bus master controller is capable of initiating memory or IO read and write upon back-end requests. The type of command and the burst size are specified by the user for each data transaction. Burst size can be pre-determined by the user for each transaction or changed as the transaction progresses.

Once a master transfer begins, the core monitors the target device’s signals on the PCI bus and transfer data to the user logic. All different types of transfer termination are handled by the core. If a transfer is retry or disconnected by the target, the master core re-starts the transfer automatically without the assistance of the user logic. Bus request, bus parking, parity detection and generation all are handled by the core.

The PCI target is capable of handling memory and IO accesses on the PCI bus. All seven types of PCI memory/IO accesses are supported. Configuration register read and write transactions are supported locally by the bus target without assistance from the user logic. The user interface allows the user to control the characteristics of the access. For example, the user can insert a wait state or transfer data without wait state according to its data bandwidth. Single or burst transfer, retry, disconnect, delay transaction and target abort can all be controlled by user logic.

The following table summarizes the optional features which are provided with the core as required by user application.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-PCI and Power Management</td>
<td>Specific supports for Mini-PCI and Power Management for mobile applications.</td>
</tr>
<tr>
<td>Base address registers</td>
<td>Supports multiple base address registers, memory or IO mapped, and expansion ROM base address register.</td>
</tr>
<tr>
<td>Address and data multiplexing</td>
<td>Separate or combined back-end address and data buses.</td>
</tr>
<tr>
<td>DAC</td>
<td>Dual Address cycle to support 64-bit address space.</td>
</tr>
<tr>
<td>Direct FIFO interface</td>
<td>The back-end bus can be made to directly interface a FIFO.</td>
</tr>
<tr>
<td>Burst length</td>
<td>Automatically limits the burst size beyond user specific boundaries.</td>
</tr>
<tr>
<td>Target burst</td>
<td>Single transfer support to minimize core size.</td>
</tr>
<tr>
<td>Asynchronous clock domains</td>
<td>Separate and asynchronous user and PCI clock domains. The core provides re-synchronization and data FIFO.</td>
</tr>
</tbody>
</table>