
September 2013 Altera Corporation

WP-01208-1.0

© 2013 Altera Corporation. Al
NIOS, QUARTUS and STRAT
Trademark Office and in othe
their respective holders as des
products to current specificatio
products and services at any ti
of any information, product, o
advised to obtain the latest ver
for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Hardware in the Loop from the
MATLAB/Simulink Environment
White Paper
This white paper describes the tools, design flow, and verification of systems using
Altera® FPGAs. It discusses the techniques of software simulation and hardware
testing, and the challenges associated with them. This paper also describes the
advantages of using the Hardware in the Loop (HIL) tool, which is part of Altera’s
software tools, to simplify software simulation and hardware testing in a variety of
applications. To implement the HIL approach, you must create a communication link
between the host development platform and the target deployment platform. The
host-target communication infrastructure, called the MATLAB API, is provided by
Altera as part of its system-in-the-loop solution. The communication link is
established using a simple application programming interface (API) that is accessible
from the MATLAB/Simulink tools by MathWorks. The MATLAB API protocol allows
you to perform interactive communication with the target FPGA from the host
computer.

Introduction
Today there are various methodologies for developing digital systems. These
methodologies include the processes for tuning, validating, and verifying systems.
Every industry can develop their own de-facto approaches.

System development testing is mainly done using two approaches. First, the
functionality and performance of the system is observed and tuned using software
simulation tools. The level of confidence that is obtained from the software simulation
is application-specific, and depends on the availability and accuracy of the system
models, testbench coverage, and duration of the executed tests. Second, the design is
deployed on a target platform to verify the functionality and measure the
performance under more realistic conditions. This approach is also known as
hardware testing.

In this paper, we examine the HIL and rapid prototyping methodologies as
complementary approaches to software simulation and hardware testing. The
examples in this white paper focus mainly on motor control designs, although these
approaches are also applicable in other areas.
l rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, HARDCOPY, MAX, MEGACORE,
IX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and
r countries. All other words and logos identified as trademarks or service marks are the property of
cribed at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor
ns in accordance with Altera's standard warranty, but reserves the right to make changes to any

me without notice. Altera assumes no responsibility or liability arising out of the application or use
r service described herein except as expressly agreed to in writing by Altera. Altera customers are
sion of device specifications before relying on any published information and before placing orders

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=WP-01208
mailto:whitepapers@altera.com?subject=Feedback on WP-01208
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/common/legal.html

Page 2 System Verification Using Software Simulation
System Verification Using Software Simulation
Software simulation offers a flexible approach to system verification. It allows you to
run through a variety of system behavior and scenarios. However, the testbench
coverage on a real system is limited due to the following reasons:

■ System design runtime can be extremely long when simulations are performed on
a reasonably big system. For example, in electro-mechanical systems, the time
constants of a mechanical system can be measured in seconds while the digital
computation rate is measured in nanoseconds.

■ Significant inaccuracies might occur due to the uncertainties of a system model.
The system model might not be known or completely characterized. It might
contain different non-linear components and environment disturbances that are
very difficult to measure and characterize.

■ A complementary verification flow might still be needed to verify the design to
obtain reliability certification. This is especially true with modern flows that
involve high-level synthesis tools.

System Verification Using Hardware Testing
Hardware testing allows you to deploy the design on target and observe the
performance of the design under real-life conditions. However, this approach, too, has
its own challenges, as highlighted below:

■ Usually only the desired scenario is tested. It is difficult to observe the system
behavior in “something went wrong” scenarios because the complete hardware
test involves external system components that are pre-defined as well. Other
system components do not always allow flexibility in the stimulus that can be
applied to the design under test (DUT).

■ The availability of a hardware platform is also a concern. The final implementation
platform is not always available during the initial design phases.

■ The cost of verification is a direct result of final hardware availability. The test time
on a hardware platform can be expensive, so it may be shared between multiple
users, departments, or divisions. However, this method might eventually cause
less verification coverage.

■ Safety is another critical aspect of hardware testing, especially during the initial
phases of the design when there are uncertainties in multiple system components.
Hardware testing on multiple system components puts significant burden on
designers as it requires careful test planning and damage mitigation.

System Verification Using Hardware in the Loop and Rapid Prototyping
The HIL and rapid prototyping methodologies provide an intermediate level of
system verification between software simulation and hardware testing. Both
methodologies are hybrids of software and hardware approaches, and inherit benefits
from both. The main difference between the two is the location of boundaries that
separate the software and hardware. You do not have to choose between the two
methods; you can apply both methods in an incremental way according to a given
situation.
September 2013 Altera Corporation Hardware in the Loop from the MATLAB/Simulink Environment

System Verification Using Hardware in the Loop and Rapid Prototyping Page 3
In the HIL approach, the design is deployed to hardware and runs in real time.
However, the surrounding components are simulated in a software environment. This
might include stimulus generators, sensors, observers, and mechanical actuators.
Such methodology allows software flexibility with real-world accuracy and hardware
speed execution. One must note that the system-level accuracy is still limited to the
system model applied in the software. Thus, the next step is to include real hardware
components gradually into the system verification testbench. Such gradual process
has much more control over the integration process, so system tuning and validation
can be obtained easily and safely.

Finally, when the full system is integrated, the HIL method still provides a software
stimulus capability that you can apply to the system to test it under a variety of
scenarios. The runtime data can be uploaded to the host and analyzed using different
analysis tools. See Figure 1.

Rapid prototyping is a complementary method to HIL. In the rapid prototyping
approach, the software host simulates the behavior of the DUT while the external
components are used from real hardware systems. This method allows precise
system-tuning based on real-world system models with extreme degrees of visibility
into the behavior of the DUT.

Both the HIL and rapid prototyping methods require cooperation from the host and
target. As a result, the design flow has to provide a side-band communication
interface between the host and target. Altera has a set of tools for this purpose that can
be used to initiate and maintain the link between these two platforms. The
communication infrastructure is based on System Console, a flexible system-level
debugging tool that helps you to quickly and efficiently debug your design while the
design is running at full speed in an FPGA. System Console enables you to send read
and write system-level transactions into your system.

Figure 1. Hardware in Loop Host-Target Interaction Concept

Host Target

Stimulus

MATLAB API

Calculation

Results
September 2013 Altera CorporationHardware in the Loop from the MATLAB/Simulink Environment

Page 4 MATLAB API
MATLAB API
MATLAB/Simulink is a high-level language and interactive environment from
MathWorks that is popular among system and algorithm designers. It can be used in a
wide variety of applications and research topics. To accommodate the developers’
need to interface their designs with Altera’s FPGA, Altera created an API that can be
called from the MATLAB environment to send and receive data to or from an FPGA.
The API is a simple set of commands which allows real-time interaction with the
FPGA design running on your target platform. The interaction is done using memory-
mapped transactions initiated from the MATLAB environment. These transactions are
captured by a dedicated Avalon® Memory-Mapped (Avalon-MM) Master interface
connected to an Avalon-MM Slave interface inside your design, and compiled into an
FPGA. Example 1 shows an example MATLAB API script.

f For further information about the Avalon-MM interfaces in the System Console,
please refer to the Avalon Interface Specifications.

The MATLAB API can be used in multiple tasks while designing, evaluating, and
verifying designs. It can be used to configure and tune an FPGA design parameter in
runtime similar to tuning data pipe gains and modifying filter parameters. It can also
be used to monitor different statuses by reading specific registers in runtime. The
most powerful capability of the MATLAB API can be seen in the HIL approach. It
allows you to generate complex stimulus datasets on the host PC and download to the
FPGA target in real time. This is convenient because it is rarely possible to create such
a flexible and sophisticated stimulus on a target platform with minimal programming
effort.

Example 1. MATLAB API Script Example

SystemConsole.refreshMasters; %Investigate available targets

M = SystemConsole.openMaster(1); %Creates connection with FPGA target

%%%%%%%% User Application %%%%%%%%%%%%
. . . .
M.write('uint32',write_address,data); %Send data to FPGA target
. . . .
data = M.read('uint32',read_address,size); %Read data from FPGA target
. . . .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

M.close; %Terminates connection to FPGA target
September 2013 Altera Corporation Hardware in the Loop from the MATLAB/Simulink Environment

MATLAB API Page 5
Altera implemented a Pulse-Doppler design running on a Stratix® V FPGA. The host
platform running in the MATLAB environment can simulate the space environment
with multiple targets moving in different directions. This space data can be
downloaded to an FPGA target and serve as an input to the Pulse-Doppler. See
Figure 2.

Another benefit of using the HIL approach is the ability to perform result analysis on
the host platform. After the stimulus data had been processed on the FPGA target, the
output results can be uploaded to the MATLAB environment on the host using the
MATLAB API. You can then apply sophisticated data analysis techniques with the
graphical visualization available in MATLAB. This capability makes the FPGA
algorithm and design verification process very powerful. It can be used to compare
software models, theoretical results, and previous implementations. Figure 3 shows
an example block diagram of the missle fin actuator.

Figure 2. Pulse Doppler Example with MATLAB API

Target

Emulation

& Noise

Comparison &

Visualization

MATLAB API

Pulse Doppler

Processing

FPGA

Figure 3. Missile Fin Actuator Example Block Diagram

Controller

Electronic

Commutator

Plus PWM

Observers/

Estimators

Power

Driver

Motor

(Brushless DC)

Mechanical

Gear

Digital Domain

Command

from Autopilot

Feedback

Sensors

Feedback
September 2013 Altera CorporationHardware in the Loop from the MATLAB/Simulink Environment

Page 6 HIL with Simulink Flow
HIL with Simulink Flow
In many applications, system design is done in a graphical model-based flow using
Simulink from MathWorks. This flow provides a cycle-accurate simulation capability
for the system. Altera created a missile fin control demo design using this
methodology. The system is modeled using Simulink blocks with a stimulus
command waveform generator, an embedded loop controller, power circuitry, and an
electro-mechanical actuator model. See Figure 4.

The hardware implementation of the fin position, velocity, and motor torque actuator
controllers was designed in the DSP Builder Advanced Blockset with Simulink-to-
FPGA synthesis technology. This technology allows you to automatically generate
timing-optimized register transfer level (RTL) code based on high-level Simulink
design descriptions. With this new DSP Builder feature, you can achieve high-
performance design implementations running at near-peak FPGA performance in a
matter of minutes. This methodology enables significant productivity savings
compared to other methodologies that require hours. Although the DSP Builder
provides multiple advantages for a model-based flow, the HIL capability is not
limited to DSP Builder designs and can be applied to any FPGA design flow.

Due to the flexibility of the MATLAB API, it is also possible to apply it in the Simulink
model-based design. You must implement the communication ports in Simulink,
which will be used to communicate with the FPGA hardware. This can be easily done
using the S-Function blocks from the Simulink library. The S-Function blocks allow
you to describe certain functionalities using a high-level programming language, such
as MATLAB scripts and the C language. During the Simulink simulation, this
functionality is evaluated on a simulation cycle basis. This block can have multiple
inputs and outputs that will serve as data pipes to and from the model-based
simulation.

Figure 4. Missile Fin Actuator Implementation in Simulink with DSP Builder Advanced Blockset
September 2013 Altera Corporation Hardware in the Loop from the MATLAB/Simulink Environment

HIL with Simulink Flow Page 7
The actual S-Function description calls the MATLAB API to write data samples to the
FPGA hardware and collects the results from the hardware. After the FPGA hardware
results are read using the MATLAB API, it will be accessed by the adjacent Simulink
block. See Figure 5.

When you run the simulation, the Simulink models interact directly with the FPGA
hardware implementation in such a way that both parts are one simulation entity. A
point to note is the aspect of accumulated error. Recursive algorithms that are using
certain types of feedback are common. For example, recursive adaptive filtering or
control loops and infinite impulse response (IIR) filters typically have a feedback
mechanism as part of the design. These designs are vulnerable to error, which can be
accumulated and amplified from one iteration to another. Such undesirable
phenomena might produce wrong simulation results and major system instability.
The HIL approach can provide insight into this erroneous behavior. By combining
HIL with software simulation, the accumulated error can be detected and contained
in the early stages of the design. Figure 6 shows a Simulink implementation of the
hardware in the loop communication link.

Figure 5. Hardware in the Loop Communication Link Implementation with Simulink
September 2013 Altera CorporationHardware in the Loop from the MATLAB/Simulink Environment

Page 8 HIL with Simulink Flow
As discussed previously, one of the biggest advantages of using the
MATLAB/Simulink environment is its data analysis and visualization capability.
When you implement HIL with the Altera FPGA and MATLAB API, you have the
capability to implement real-time data analysis and visualization during simulation
runtime. See Figure 7.

In addition, the HIL methodology can accelerate simulation time. As the FPGA design
runs on a dedicated hardware at clock speed, it is much faster than simulating a
similar design on the host processor. In the HIL methodology, the cause for a
bottleneck in the design flow has transitioned from processing time to the data
communication between the host and target platform. However, with the current

Figure 6. Hardware in the Loop Communication Link Implementation with Simulink

Controller

Electronic

Commutator

Plus PWM

Observers/

Estimators

Power

Driver

Motor

(Brushless DC)

Mechanical

Gear

Command

from Autopilot

Feedback

Sensors

Feedback

Altera

MATLAB API (System Console)

Figure 7. Hardware in the Loop Communication Link Implementation with Simulink
September 2013 Altera Corporation Hardware in the Loop from the MATLAB/Simulink Environment

Conclusion Page 9
implementation of the MATLAB API using JTAG or USB links, you can obtain a
significant improvement in simulation runtime compared to cycle-accurate host
simulation. In the missile fin control design demo, the HIL methodology obtained an
acceleration factor of 50 times compared to software simulation. Moreover, with the
increase in design complexity, the advantages of the HIL methodology over software
simulation at runtime will be more evident.

Conclusion
In summary, designers can benefit from using the HIL methodology during different
stages of the design cycle. The advantages of applying the HIL methodology for
design and verification phases are further illustrated with the digital beamforming
and missile fin control demo design examples. Altera provides a very flexible
infrastructure to implement the software and hardware co-simulation similar to the
HIL capability.

Further Information
■ Chapter 10: Analyzing and Debugging Designs with the System Console in the

Quartus II Handbook
www.altera.com/literature/hb/qts/qts_qii53028.pdf

Acknowledgements
■ Dan Pritsker, Design Engineer, System Solutions Engineering, Altera Corporation

Document Revision History
Table 1 shows the revision history for this document.

Table 1. Document Revision History

Date Version Changes

September 2013 1.0 Initial release.
September 2013 Altera CorporationHardware in the Loop from the MATLAB/Simulink Environment

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf

	Hardware in the Loop from the MATLAB/Simulink Environment
	Introduction
	System Verification Using Software Simulation
	System Verification Using Hardware Testing
	System Verification Using Hardware in the Loop and Rapid Prototyping
	MATLAB API
	HIL with Simulink Flow
	Conclusion
	Further Information
	Acknowledgements
	Document Revision History

