Despite being small, the H264-E-BPF produces high-quality video, especially at low bit rates, and is suitable for systems with low latency requirements. It uses constant quantization to output video streams of Variable Bit-Rate (VBR), or automatically regulates quantization multiple times within a frame to output Constant Bit-Rate (CBR) streams. In CBR mode it responds rapidly to temporal or spatial changes in the video content. This can be combined with an artifacts-free Intra-Refresh coding implementation to effectively eliminate bit rate peaks, while preserving the periodic intra-coded references. As a result, the stream buffers can be smaller than those typically required, and the end-to-end latency can be brought down to frame or sub-frame levels. Video quality at low bit rates is preserved, as the encoder intelligently uses block-skipping and quantization coefficient thresholding to reduce bit rate with minimal quality loss and uses the in-loop deblockin...
Despite being small, the H264-E-BPF produces high-quality video, especially at low bit rates, and is suitable for systems with low latency requirements. It uses constant quantization to output video streams of Variable Bit-Rate (VBR), or automatically regulates quantization multiple times within a frame to output Constant Bit-Rate (CBR) streams. In CBR mode it responds rapidly to temporal or spatial changes in the video content. This can be combined with an artifacts-free Intra-Refresh coding implementation to effectively eliminate bit rate peaks, while preserving the periodic intra-coded references. As a result, the stream buffers can be smaller than those typically required, and the end-to-end latency can be brought down to frame or sub-frame levels. Video quality at low bit rates is preserved, as the encoder intelligently uses block-skipping and quantization coefficient thresholding to reduce bit rate with minimal quality loss and uses the in-loop deblocking filter to eliminate the blocking artifact.