Skip to main content
Home

Search

×
Info Icon

Some of our content has been moved to altera.com and we are working on migrating the remaining content and experiences. Lets us help you find what you’re looking for.

Find what you're looking for through Altera Platform

Community Forums Partner Network Training

Find Resources on Intel's platforms

Software Downloads Design Examples Documentation Product Support PCB Resources Find KDB

Having a hard time finding something? Contact us

  • Products

    Products

    View All Products
    FPGAs, SoCs, CPLDs
    High-Performance
    Agilex 9 Agilex 7 Stratix 10
    Mid-Range
    Agilex 5 Arria 10 Arria V
    Power and Cost-Optimized
    Agilex 3 MAX 10 MAX V Cyclone 10 Cyclone V Cyclone IV
    Development Software & Tools
    AI Development Tools
    FPGA AI Suite
    FPGA Design & Simulation Tools
    Quartus Prime Design Software Power and Thermal Calculator Questa* – Altera FPGA Edition Advanced Link Analyzer Open FPGA Stack (OFS) Transceiver Toolkit
    Embedded Design Tools & Software
    Nios V Ashling RISCFree IDE Visual Designer Studio Intel Simics Simulator for Altera FPGAs ARM SoC EDS
    IP Development Tools
    DSP Builder Altera FPGA Add-on for oneAPI Base Toolkit P4 Suite for FPGAs
    Development Kits
    High-Performance
    Agilex 9 Agilex 7 Stratix 10
    Mid-Range
    Agilex 5 Arria 10 Arria V
    Power and Cost-Optimized
    Agilex 3 MAX 10 MAX V Cyclone 10 Cyclone V Cyclone IV
    Intellectual Property
    Interfaces
    PCI Express Compute Express Link (CXL) Ethernet Audio / Video Communication High Speed Serial Networking / Security
    Memory Controllers
    DMA Flash SDRAM SRAM
    Digital Signal Processing & AI
    AI Video & Image Processing Floating Point Error Correction Modulation Filters / Transforms
    Soft Embedded Processors
    Nios V RISC V
    Transceivers & Basic Functions
    Clocks, PLLs & Resets Transceivers Simulation, Debug & Verification
  • Solutions

    Solutions

    Industries
    AI Broadcast & Pro AV Consumer Electronics Financial Services
    Industrial Medical Military, Aerospace & Government Security
    Test & Measurement Transportation Wireless Wireline
  • Design

    Design

    View All Design
    Download & License Center
    FPGA Development Tools
    Quartus Prime Pro Quartus Prime Standard Quartus Prime Lite
    Embedded Tools
    Arm* Development Studio SoC FPGA Embedded Development Suite
    Add-On Development Tools
    DSP Builder Questa*-FPGA ModelSim-FPGA SimicsSimulator for Altera FPGA Self Service License Center Licensing Support Center
    Design Hubs & Training
    Design Hubs
    Agilex 7 Agilex 5 Agilex 3 View all Design Hubs
    Developer Centers
    Stratix 10 Arria 10 Cyclone 10 GX Cyclone 10 LP MAX 10 View all Developer Centers
    Training
    Training Overview My Learning eLearning Catalog Instructor-Led Training Catalog All Altera FPGA Training Learning Plans How to Begin a Simple FPGA Design How To Videos
    Example Designs
    FPGA Developer Site
    Example Designs Zephyr Drivers Linux Drivers See All
    Design Store
    Agilex 7 Agilex 5 MAX 10 See All
    Documentation
    All FPGA Documentation
    By Product Family IP Docs Dev Software Docs Release Notes Application Notes Device Overviews Datasheets Errata/Known Issues User Guides Pin Connection Guidelines Pinouts Package Drawings
    Design Resources
    Quartus Support Center Step-by-Step Dev Guidance Examples Designs Docs & Resources by Family PCB Resources Package Drawings Pinouts Quality & Reliablity Find Boards / Dev Kits Find IP Find Partners Find Knowledge Articles
    Partners
    Find Partners Find Offerings About ASAP Join Now Sign In
  • Support

    Support

    Support
    Community Forums Knowledge Articles
    Premier Support Quality & Reliability
  • About

    About

    About
    Company Overview Newsroom
    Careers Blogs
    Events
  • Contact Us

    Contact Us

    • FPGAs, SoCs, CPLDs
      • High-Performance
        • Agilex 9
        • Agilex 7
        • Stratix 10
      • Mid-Range
        • Agilex 5
        • Arria 10
        • Arria V
      • Power and Cost-Optimized
        • Agilex 3
        • MAX 10
        • MAX V
        • Cyclone 10
        • Cyclone V
        • Cyclone IV
    • Development Software & Tools
      • AI Development Tools
        • FPGA AI Suite
      • FPGA Design & Simulation Tools
        • Quartus Prime Design Software
        • Power and Thermal Calculator
        • Questa* – Altera FPGA Edition
        • Advanced Link Analyzer
        • Open FPGA Stack (OFS)
        • Transceiver Toolkit
      • Embedded Design Tools & Software
        • Nios V
        • Ashling RISCFree IDE
        • Visual Designer Studio
        • Intel Simics Simulator for Altera FPGAs
        • ARM SoC EDS
      • IP Development Tools
        • DSP Builder
        • Altera FPGA Add-on for oneAPI Base Toolkit
        • P4 Suite for FPGAs
    • Development Kits
      • High-Performance
        • Agilex 9
        • Agilex 7
        • Stratix 10
      • Mid-Range
        • Agilex 5
        • Arria 10
        • Arria V
      • Power and Cost-Optimized
        • Agilex 3
        • MAX 10
        • MAX V
        • Cyclone 10
        • Cyclone V
        • Cyclone IV
    • Intellectual Property
      • Interfaces
        • PCI Express
        • Compute Express Link (CXL)
        • Ethernet
        • Audio / Video
        • Communication
        • High Speed
        • Serial
        • Networking / Security
      • Memory Controllers
        • DMA
        • Flash
        • SDRAM
        • SRAM
      • Digital Signal Processing & AI
        • AI
        • Video & Image Processing
        • Floating Point
        • Error Correction
        • Modulation
        • Filters / Transforms
      • Soft Embedded Processors
        • Nios V
        • RISC V
      • Transceivers & Basic Functions
        • Clocks, PLLs & Resets
        • Transceivers
        • Simulation, Debug & Verification
    View All Products
    • Industries
        • AI
        • Broadcast & Pro AV
        • Consumer Electronics
        • Financial Services
        • Industrial
        • Medical
        • Military, Aerospace & Government
        • Security
        • Test & Measurement
        • Transportation
        • Wireless
        • Wireline
    • Download & License Center
      • FPGA Development Tools
        • Quartus Prime Pro
        • Quartus Prime Standard
        • Quartus Prime Lite
      • Embedded Tools
        • Arm* Development Studio
        • SoC FPGA Embedded Development Suite
      • Add-On Development Tools
        • DSP Builder
        • Questa*-FPGA
        • ModelSim-FPGA
        • SimicsSimulator for Altera FPGA
        • Self Service License Center
        • Licensing Support Center
    • Design Hubs & Training
      • Design Hubs
        • Agilex 7
        • Agilex 5
        • Agilex 3
        • View all Design Hubs
      • Developer Centers
        • Stratix 10
        • Arria 10
        • Cyclone 10 GX
        • Cyclone 10 LP
        • MAX 10
        • View all Developer Centers
      • Training
        • Training Overview
        • My Learning
        • eLearning Catalog
        • Instructor-Led Training Catalog
        • All Altera FPGA Training
        • Learning Plans
        • How to Begin a Simple FPGA Design
        • How To Videos
    • Example Designs
      • FPGA Developer Site
        • Example Designs
        • Zephyr Drivers
        • Linux Drivers
        • See All
      • Design Store
        • Agilex 7
        • Agilex 5
        • MAX 10
        • See All
    • Documentation
      • All FPGA Documentation
        • By Product Family
        • IP Docs
        • Dev Software Docs
        • Release Notes
        • Application Notes
        • Device Overviews
        • Datasheets
        • Errata/Known Issues
        • User Guides
        • Pin Connection Guidelines
        • Pinouts
        • Package Drawings
    • Design Resources
        • Quartus Support Center
        • Step-by-Step Dev Guidance
        • Examples Designs
        • Docs & Resources by Family
        • PCB Resources
        • Package Drawings
        • Pinouts
        • Quality & Reliablity
        • Find Boards / Dev Kits
        • Find IP
        • Find Partners
        • Find Knowledge Articles
    • Partners
        • Find Partners
        • Find Offerings
        • About ASAP
        • Join Now
        • Sign In
    View All Design
    • Support
        • Community Forums
        • Knowledge Articles
        • Premier Support
        • Quality & Reliability
    • About
        • Company Overview
        • Newsroom
        • Careers
        • Blogs
        • Events
  • Contact Us

Breadcrumb

...
Design Resources
FPGA Power Solutions Resources
Power Supply Regulation
Hero Banner image

Power Supply Regulation

Linear Regulators Switching Regulators Buck Converter Synchronous Buck Converter Boost Converter Buck-Boost Converter
left arrow
right arrow

DC-DC voltage converters are often used to provide a regulated voltage supply from an unregulated voltage source. Unregulated voltage sources can be rectified line voltages that exhibit fluctuations due to changes in magnitude. Regulated voltage supplies provide an average DC output voltage at a desired level (3.3 V, 2.5 V, etc.), despite fluctuating input voltage sources and variable output loads. Factors to consider when deciding on a regulated voltage supply solution include:

  • Available source input voltages
  • Desired supply output voltage magnitudes
  • Ability to step-down or step-up output voltages, or both
  • DC-DC converter efficiency (POUT / PIN)
  • Output voltage ripple
  • Output load transient response
  • Solution complexity (one IC solution, # of passive components, controller and external FETs)
  • Switching frequency (for switch-mode regulators)

The following sections describe several different voltage regulators.

Linear Regulators

Linear voltage regulators are commonly used for step-down (output supply voltage is lower than input source voltage) applications. Linear regulators are also available with either a fixed output voltage or a variable output voltage when using external biasing resistors.

The advantage of linear regulators is simple implementation and minimal parts (just the IC in the case of fixed output) and low output ripple. The major disadvantage of linear regulators is low efficiency. Significant power is dissipated within the linear regulator IC, as the converter is constantly on and conducting current. Linear regulators should be used when the difference between input source voltage and output supply voltage is minimal, and converter efficiency is not a concern.

Switching Regulators

Switching voltage regulators are commonly used for both step-up and step-down applications, and differ from linear regulators by means of pulse-width modulation (PWM) implementation. Switching regulators control the output voltage by using a current switch (internal or external to the IC regulator) with a constant frequency and variable duty-cycle. Switching frequencies are generally from a few kHz to a few hundred kHz. The switch duty-cycle ratio determines how much and how quickly the output supply voltage increases or decreases, depending on the load state and input source voltage. Some switching regulators utilize both variable switching frequency and duty-cycle, but these are not commonly used for FPGA/CPLD applications.

The clear advantage of switching regulators is efficiency, as minimal power is dissipated in the power path (FET switches) when the output supply voltage is sufficient for the load state. Essentially, the power converter "shuts off" when power is not needed, due to minimal switch duty-cycle. The disadvantage of switching regulators is complexity, as several external passive components are required on board. In the case of high-current applications, external FET ICs are required as the IC-converter acts only as control logic for the external FET switch. Output voltage ripple is another disadvantage, which is generally handled with bypass capacitance near the supply and at the load.

Buck Converter

Buck, or step-down, voltage converters produce an average output voltage lower than the input source voltage. Figure 1 shows a basic buck topology using ideal components. The inductor serves as a current source to the output load impedance. When the FET switch is on, the inductor current increases, inducing a positive voltage drop across the inductor and a lower output supply voltage in reference to the input source voltage. When the FET switch is off, the inductor current discharges, inducing a negative voltage drop across the inductor. Because one port of the inductor is tied to ground, the other port will have a higher voltage level, which is the target output supply voltage. The output capacitance acts as a low-pass filter, reducing output voltage ripple as a result of the fluctuating current through the inductor. The diode provides a current path for the inductor when the FET switch is off.

Expand Close
design board image
Figure 1. Buck Converter.

Synchronous Buck Converter

The synchronous buck converter is essentially the same as the buck step-down converter with the substitution of the diode for another FET switch. The top FET switch behaves the same way as the buck converter in charging the inductor current. When the switch control is off, the lower FET switch turns on to provide a current path for the inductor when discharging. Although requiring more components and additional switch logic sequencing, this topology improves efficiency with faster switch turn-on time and lower FET series resistance (rdson) versus the diode.

Expand Close
design board image
Figure 2. Synchronous Buck Converter.

Boost Converter

Boost, or step-up, converters produce an average output voltage higher than the input source voltage. Figure 3 shows a variation of the buck topology, with the diode, FET switch, and inductor swapped around. When the FET switch is on, the diode is reverse-biased, hence isolating the load from the input source voltage and charging up the inductor current. When the FET switch is off, the output load receives energy from the inductor and the input supply voltage. The inductor current begins to discharge, inducing a negative voltage drop across the inductor. Because one port of the inductor is driven by the input supply voltage, the other port will have a higher voltage level, thus the boost or step-up feature. As with the buck converter, the capacitor acts as a low-pass filter, reducing output voltage ripple as a result of the fluctuating current through the inductor.

Expand Close
design board image
Figure 3. Boost Converter.

Buck-Boost Converter

Buck-boost converters can produce a negative output supply voltage from a positive input source voltage (i.e., negative in reference to the common/ground port of the input source voltage). Similar to a buck converter, the topology above has swapped the diode and inductor. When the FET switch is on, the diode is reverse-biased, charging the inductor current due to the positive voltage drop across the inductor. When the FET switch is off, the inductor provides energy to the output load through the common/ground node, discharging the current, which induces a negative voltage drop across the inductor. Because one inductor port is tied to common/ground, the other port is at a lower voltage level compared to common/ground, hence the negative output supply voltage levels across the output load.

Expand Close
design board image
Figure 4. Buck-Boost Converter.
footerbackground
site-footer-logo
Products
  • FPGA, SoCs, CPLD’s
  • Development Software & Tools
  • Development Kits
  • Intellectual Property
Design
  • Download & License Center
  • Design Hub
  • Documentation
  • Training
  • Design Examples
  • Design Resources
  • Partner Network
Support
  • Community Forum
  • Premier Support
  • Knowledge Articles
  • Quality & Reliability
About
  • Company Overview
  • Newsroom
  • Careers
© Altera Corporation Terms of Use Privacy Policy Cookies Trademarks PSIRT